Try our new research platform with insights from 80,000+ expert users

Apache Flink vs Informatica Data Engineering Streaming comparison

 

Comparison Buyer's Guide

Executive Summary

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Flink
Ranking in Streaming Analytics
5th
Average Rating
7.8
Reviews Sentiment
6.9
Number of Reviews
18
Ranking in other categories
No ranking in other categories
Informatica Data Engineerin...
Ranking in Streaming Analytics
17th
Average Rating
8.0
Reviews Sentiment
6.4
Number of Reviews
1
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of July 2025, in the Streaming Analytics category, the mindshare of Apache Flink is 13.9%, up from 9.7% compared to the previous year. The mindshare of Informatica Data Engineering Streaming is 1.5%, up from 1.1% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics
 

Featured Reviews

Aswini Atibudhi - PeerSpot reviewer
Enables robust real-time data processing but documentation needs refinement
Apache Flink is very powerful, but it can be challenging for beginners because it requires prior experience with similar tools and technologies, such as Kafka and batch processing. It's essential to have a clear foundation; hence, it can be tough for beginners. However, once they grasp the concepts and have examples or references, it becomes easier. Intermediate users who are integrating with Kafka or other sources may find it smoother. After setting up and understanding the concepts, it becomes quite stable and scalable, allowing for customization of jobs. Every ( /products/every-reviews ) software, including Apache Flink, has room for improvement as it evolves. One key area for enhancement is user-friendliness and the developer experience; improving documentation and API specifications is essential, as they can currently be verbose and complex. Debugging ( /categories/debugging ) and local testing pose challenges for newcomers, particularly when learning about concepts such as time semantics and state handling. Although the APIs exist, they aren't intuitive enough. We also need to simplify operational procedures, such as developing tools and tuning Flink clusters, as these processes can be quite complex. Additionally, implementing one-click rollback for failures and improving state management during dynamic scaling while retaining the last states is vital, as the current large states pose scaling challenges.
DK
Helps with real-time data processing and improves decision-making overall
It improves decision-making overall for the company. Informatica is usually the tool for setting up the data, streaming the data into your data warehouse from your source, transforming the data, and preparing and modeling it into some desired format. It improves the performance. You need to know how to use it and how to implement it, but it improves performance.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The documentation is very good."
"Apache Flink is meant for low latency applications. You take one event opposite if you want to maintain a certain state. When another event comes and you want to associate those events together, in-memory state management was a key feature for us."
"It is user-friendly and the reporting is good."
"The event processing function is the most useful or the most used function. The filter function and the mapping function are also very useful because we have a lot of data to transform. For example, we store a lot of information about a person, and when we want to retrieve this person's details, we need all the details. In the map function, we can actually map all persons based on their age group. That's why the mapping function is very useful. We can really get a lot of events, and then we keep on doing what we need to do."
"The top feature of Apache Flink is its low latency for fast, real-time data. Another great feature is the real-time indicators and alerts which make a big difference when it comes to data processing and analysis."
"Apache Flink offers a range of powerful configurations and experiences for development teams. Its strength lies in its development experience and capabilities."
"Apache Flink's best feature is its data streaming tool."
"It provides us the flexibility to deploy it on any cluster without being constrained by cloud-based limitations."
"It improves the performance."
 

Cons

"In terms of stability with Flink, it is something that you have to deal with every time. Stability is the number one problem that we have seen with Flink, and it really depends on the kind of problem that you're trying to solve."
"One way to improve Flink would be to enhance integration between different ecosystems. For example, there could be more integration with other big data vendors and platforms similar in scope to how Apache Flink works with Cloudera. Apache Flink is a part of the same ecosystem as Cloudera, and for batch processing it's actually very useful but for real-time processing there could be more development with regards to the big data capabilities amongst the various ecosystems out there."
"In terms of improvement, there should be better reporting. You can integrate with reporting solutions but Flink doesn't offer it themselves."
"Apache Flink is very powerful, but it can be challenging for beginners because it requires prior experience with similar tools and technologies, such as Kafka and batch processing."
"There are more libraries that are missing and also maybe more capabilities for machine learning."
"Apache Flink should improve its data capability and data migration."
"In a future release, they could improve on making the error descriptions more clear."
"Apache should provide more examples and sample code related to streaming to help me better adapt and utilize the tool."
"Skill requirement is required. There is a learning curve."
 

Pricing and Cost Advice

"This is an open-source platform that can be used free of charge."
"It's an open-source solution."
"The solution is open-source, which is free."
"It's an open source."
"Apache Flink is open source so we pay no licensing for the use of the software."
Information not available
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
860,592 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
24%
Computer Software Company
14%
Manufacturing Company
7%
Retailer
5%
Financial Services Firm
27%
Computer Software Company
15%
Manufacturing Company
6%
Educational Organization
5%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

What do you like most about Apache Flink?
The product helps us to create both simple and complex data processing tasks. Over time, it has facilitated integration and navigation across multiple data sources tailored to each client's needs. ...
What is your experience regarding pricing and costs for Apache Flink?
The solution is expensive. I rate the product’s pricing a nine out of ten, where one is cheap and ten is expensive.
What needs improvement with Apache Flink?
Apache should provide more examples and sample code related to streaming to help me better adapt and utilize the tool. There is a need for increased awareness and education, especially around best ...
What needs improvement with Informatica Data Engineering Streaming?
Skill requirement is required. There is a learning curve.
What is your primary use case for Informatica Data Engineering Streaming?
We implement business intelligence solutions, including data warehousing tools, data integration to load data into warehouses, and then creating reports.
What advice do you have for others considering Informatica Data Engineering Streaming?
Overall, I would rate the solution an eight out of ten. Usually, Informatica is for big clients because of its pricing, and it also requires some skill sets. It requires investment into a proper da...
 

Also Known As

Flink
Big Data Streaming, Informatica Intelligent Streaming, Intelligent Streaming
 

Overview

 

Sample Customers

LogRhythm, Inc., Inter-American Development Bank, Scientific Technologies Corporation, LotLinx, Inc., Benevity, Inc.
Jewelry TV
Find out what your peers are saying about Databricks, Amazon Web Services (AWS), Microsoft and others in Streaming Analytics. Updated: June 2025.
860,592 professionals have used our research since 2012.