Try our new research platform with insights from 80,000+ expert users

Apache Flink vs TIBCO Streaming comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Aug 25, 2025

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Flink
Ranking in Streaming Analytics
5th
Average Rating
7.8
Reviews Sentiment
6.9
Number of Reviews
18
Ranking in other categories
No ranking in other categories
TIBCO Streaming
Ranking in Streaming Analytics
26th
Average Rating
8.0
Number of Reviews
1
Ranking in other categories
CEP (2nd)
 

Mindshare comparison

As of October 2025, in the Streaming Analytics category, the mindshare of Apache Flink is 14.8%, up from 10.6% compared to the previous year. The mindshare of TIBCO Streaming is 0.7%, up from 0.2% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics Market Share Distribution
ProductMarket Share (%)
Apache Flink14.8%
TIBCO Streaming0.7%
Other84.5%
Streaming Analytics
 

Featured Reviews

Aswini Atibudhi - PeerSpot reviewer
Enables robust real-time data processing but documentation needs refinement
Apache Flink is very powerful, but it can be challenging for beginners because it requires prior experience with similar tools and technologies, such as Kafka and batch processing. It's essential to have a clear foundation; hence, it can be tough for beginners. However, once they grasp the concepts and have examples or references, it becomes easier. Intermediate users who are integrating with Kafka or other sources may find it smoother. After setting up and understanding the concepts, it becomes quite stable and scalable, allowing for customization of jobs. Every software, including Apache Flink, has room for improvement as it evolves. One key area for enhancement is user-friendliness and the developer experience; improving documentation and API specifications is essential, as they can currently be verbose and complex. Debugging and local testing pose challenges for newcomers, particularly when learning about concepts such as time semantics and state handling. Although the APIs exist, they aren't intuitive enough. We also need to simplify operational procedures, such as developing tools and tuning Flink clusters, as these processes can be quite complex. Additionally, implementing one-click rollback for failures and improving state management during dynamic scaling while retaining the last states is vital, as the current large states pose scaling challenges.
MK
Good stability and scalability with the capability to combine with Spotfire
The ability for StreamBase to combine with Spotfire is its most valuable aspect. The ability to handle data in motion and the entirety of data at the same time is very good. If you don't integrate the two together it's just a monitoring tool, but if they're combined together it becomes a powerful analytical tool. When you can combine live data from streaming data sources with standing data from the customer's primary database then you can calculate some KPIs or thresholds based on the previous information. We can do data science, machine learning methods or just clever queries. You can view all this online. If a KPI hits a redline, you can send alerts, which is the solution's most functional feature.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Allows us to process batch data, stream to real-time and build pipelines."
"Easy to deploy and manage."
"This is truly a real-time solution."
"Apache Flink's best feature is its data streaming tool."
"The documentation is very good."
"Another feature is how Flink handles its radiuses. It has something called the checkpointing concept. You're dealing with billions and billions of requests, so your system is going to fail in large storage systems. Flink handles this by using the concept of checkpointing and savepointing, where they write the aggregated state into some separate storage. So in case of failure, you can basically recall from that state and come back."
"The product helps us to create both simple and complex data processing tasks. Over time, it has facilitated integration and navigation across multiple data sources tailored to each client's needs. We use Apache Flink to control our clients' installations."
"It provides us the flexibility to deploy it on any cluster without being constrained by cloud-based limitations."
"The ability for StreamBase to combine with Spotfire is its most valuable aspect. The ability to handle data in motion and the entirety of data at the same time is very good. If you don't integrate the two together it's just a monitoring tool, but if they're combined together it becomes a powerful analytical tool."
 

Cons

"In terms of improvement, there should be better reporting. You can integrate with reporting solutions but Flink doesn't offer it themselves."
"In terms of stability with Flink, it is something that you have to deal with every time. Stability is the number one problem that we have seen with Flink, and it really depends on the kind of problem that you're trying to solve."
"Apache Flink should improve its data capability and data migration."
"One way to improve Flink would be to enhance integration between different ecosystems. For example, there could be more integration with other big data vendors and platforms similar in scope to how Apache Flink works with Cloudera. Apache Flink is a part of the same ecosystem as Cloudera, and for batch processing it's actually very useful but for real-time processing there could be more development with regards to the big data capabilities amongst the various ecosystems out there."
"We have a machine learning team that works with Python, but Apache Flink does not have full support for the language."
"The state maintains checkpoints and they use RocksDB or S3. They are good but sometimes the performance is affected when you use RocksDB for checkpointing."
"The TimeWindow feature is a bit tricky. The timing of the content and the windowing is a bit changed in 1.11. They have introduced watermarks. A watermark is basically associating every data with a timestamp. The timestamp could be anything, and we can provide the timestamp. So, whenever I receive a tweet, I can actually assign a timestamp, like what time did I get that tweet. The watermark helps us to uniquely identify the data. Watermarks are tricky if you use multiple events in the pipeline. For example, you have three resources from different locations, and you want to combine all those inputs and also perform some kind of logic. When you have more than one input screen and you want to collect all the information together, you have to apply TimeWindow all. That means that all the events from the upstream or from the up sources should be in that TimeWindow, and they were coming back. Internally, it is a batch of events that may be getting collected every five minutes or whatever timing is given. Sometimes, the use case for TimeWindow is a bit tricky. It depends on the application as well as on how people have given this TimeWindow. This kind of documentation is not updated. Even the test case documentation is a bit wrong. It doesn't work. Flink has updated the version of Apache Flink, but they have not updated the testing documentation. Therefore, I have to manually understand it. We have also been exploring failure handling. I was looking into changelogs for which they have posted the future plans and what are they going to deliver. We have two concerns regarding this, which have been noted down. I hope in the future that they will provide this functionality. Integration of Apache Flink with other metric services or failure handling data tools needs some kind of update or its in-depth knowledge is required in the documentation. We have a use case where we want to actually analyze or get analytics about how much data we process and how many failures we have. For that, we need to use Tomcat, which is an analytics tool for implementing counters. We can manage reports in the analyzer. This kind of integration is pretty much straightforward. They say that people must be well familiar with all the things before using this type of integration. They have given this complete file, which you can update, but it took some time. There is a learning curve with it, which consumed a lot of time. It is evolving to a newer version, but the documentation is not demonstrating that update. The documentation is not well incorporated. Hopefully, these things will get resolved now that they are implementing it. Failure is another area where it is a bit rigid or not that flexible. We never use this for scaling because complexity is very high in case of a failure. Processing and providing the scaled data back to Apache Flink is a bit challenging. They have this concept of offsetting, which could be simplified."
"In a future release, they could improve on making the error descriptions more clear."
"The solution should be more user-friendly for developers. Right now, you need a strong programmer to tune the solution. It's complicated product. I'm not sure if it can be done via self-service with BI. Because I'm from BI, I want more simplicity."
 

Pricing and Cost Advice

"The solution is open-source, which is free."
"It's an open source."
"It's an open-source solution."
"Apache Flink is open source so we pay no licensing for the use of the software."
"This is an open-source platform that can be used free of charge."
Information not available
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
868,759 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
22%
Retailer
11%
Computer Software Company
11%
Manufacturing Company
7%
Financial Services Firm
24%
Manufacturing Company
12%
Computer Software Company
12%
Performing Arts
10%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business5
Midsize Enterprise3
Large Enterprise11
No data available
 

Questions from the Community

What do you like most about Apache Flink?
The product helps us to create both simple and complex data processing tasks. Over time, it has facilitated integration and navigation across multiple data sources tailored to each client's needs. ...
What is your experience regarding pricing and costs for Apache Flink?
The solution is expensive. I rate the product’s pricing a nine out of ten, where one is cheap and ten is expensive.
What needs improvement with Apache Flink?
Apache should provide more examples and sample code related to streaming to help me better adapt and utilize the tool. There is a need for increased awareness and education, especially around best ...
Ask a question
Earn 20 points
 

Also Known As

Flink
TIBCO Streambase CEP
 

Overview

 

Sample Customers

LogRhythm, Inc., Inter-American Development Bank, Scientific Technologies Corporation, LotLinx, Inc., Benevity, Inc.
Blendtec, Brembo, CargoSmart, Hunt Oil, Autodata, Bank of Montreal
Find out what your peers are saying about Databricks, Amazon Web Services (AWS), Confluent and others in Streaming Analytics. Updated: September 2025.
868,759 professionals have used our research since 2012.