Try our new research platform with insights from 80,000+ expert users

Apache Spark Streaming vs Databricks comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 17, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Spark Streaming
Ranking in Streaming Analytics
10th
Average Rating
8.0
Reviews Sentiment
7.4
Number of Reviews
11
Ranking in other categories
No ranking in other categories
Databricks
Ranking in Streaming Analytics
1st
Average Rating
8.2
Reviews Sentiment
7.0
Number of Reviews
91
Ranking in other categories
Cloud Data Warehouse (8th), Data Science Platforms (1st)
 

Mindshare comparison

As of July 2025, in the Streaming Analytics category, the mindshare of Apache Spark Streaming is 2.6%, down from 3.7% compared to the previous year. The mindshare of Databricks is 14.2%, up from 11.3% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics
 

Featured Reviews

Oscar Estorach - PeerSpot reviewer
Versatile and flexible when dealing with large-scale data streams
What I like about Spark is its versatility in supporting multiple languages and that makes it my preferred choice for building scalable and efficient systems, whether it is hooking databases with web applications or handling large-scale data transformations. Apache Spark Streaming is versatile. You can use it for competitive intelligence, gathering data from competitors, or for internal tasks like monitoring workflows. It works well in the cloud, and you can structure data using Databricks or Spark, providing flexibility for different projects. Spark Streaming's flexibility shines when dealing with large-scale data streams. It caters to different needs, offering real-time insights for tasks like online sales analytics. The ability to prioritize data streams is valuable, especially for monitoring competitor prices online.
ShubhamSharma7 - PeerSpot reviewer
Capability to integrate diverse coding languages in a single notebook greatly enhances workflow
Databricks offers various courses that I can use, whether it's PySpark, Scala, or R. I can leverage all these courses in a single notebook, which is beneficial for clients as they can access various tools in one place whenever needed. This is quite significant. I usually work with PySpark based on client requirements. After coding, I feed the Databricks notebooks into the ADF pipeline for updates. Databricks' capability to process data in parallel enhances data processing speed. Furthermore, I can connect our Databricks notebook directly with Power BI and other visualization tools like Qlik. Once we develop code, it allows us to transform raw data into visualizations for clients using analysis diagrams, which is very helpful.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"It's the fastest solution on the market with low latency data on data transformations."
"Spark Streaming is critical, quite stable, full-featured, and scalable."
"The solution is very stable and reliable."
"Apache Spark Streaming has features like checkpointing and Streaming API that are useful."
"The solution is better than average and some of the valuable features include efficiency and stability."
"Apache Spark Streaming was straightforward in terms of maintenance. It was actively developed, and migrating from an older to a newer version was quite simple."
"Apache Spark's capabilities for machine learning are quite extensive and can be used in a low-code way."
"Apache Spark Streaming's most valuable feature is near real-time analytics. The developers can build APIs easily for a code-steaming pipeline. The solutions have an ecosystem of integration with other stock services."
"The tool helps with data processing and analytics with large-scale data or big data since it is associated with managing data at a large scale."
"The solution is very easy to use."
"Databricks is hosted on the cloud. It is very easy to collaborate with other team members who are working on it. It is production-ready code, and scheduling the jobs is easy."
"The solution is an impressive tool for data migration and integration."
"I like how easy it is to share your notebook with others. You can give people permission to read or edit. I think that's a great feature. You can also pull in code from GitHub pretty easily. I didn't use it that often, but I think that's a cool feature."
"Databricks has a scalable Spark cluster creation process. The creators of Databricks are also the creators of Spark, and they are the industry leaders in terms of performance."
"It is fast, it's scalable, and it does the job it needs to do."
"Databricks integrates well with other solutions."
 

Cons

"It was resource-intensive, even for small-scale applications."
"Integrating event-level streaming capabilities could be beneficial."
"The initial setup is quite complex."
"There could be an improvement in the area of the user configuration section, it should be less developer-focused and more business user-focused."
"In terms of improvement, the UI could be better."
"The debugging aspect could use some improvement."
"The cost and load-related optimizations are areas where the tool lacks and needs improvement."
"We would like to have the ability to do arbitrary stateful functions in Python."
"A lot of people are required to manage this solution."
"It's not easy to use, and they need a better UI."
"Can be improved by including drag-and-drop features."
"The solution has some scalability and integration limitations when consolidating legacy systems."
"We often use a single cluster to ingest Databricks, which Databricks doesn't recommend. They suggest using a no-cluster solution like job clusters. This can be overwhelming for us because we started smaller."
"I believe that this product could be improved by becoming more user-friendly."
"I would love an integration in my desktop IDE. For now, I have to code on their webpage."
"It would be better if it were faster. It can be slow, and it can be super fast for big data. But for small data, sometimes there is a sub-second response, which can be considered slow. In the next release, I would like to have automatic creation of APIs because they don't have it at the moment, and I spend a lot of time building them."
 

Pricing and Cost Advice

"People pay for Apache Spark Streaming as a service."
"I was using the open-source community version, which was self-hosted."
"On a scale from one to ten, where one is expensive, or not cost-effective, and ten is cheap, I rate the price a seven."
"Spark is an affordable solution, especially considering its open-source nature."
"I would rate the tool’s pricing an eight out of ten."
"It is an expensive tool. The licensing model is a pay-as-you-go one."
"The cost for Databricks depends on the use case. I work on it as a consultant, so I'm using the client's Databricks, so it depends on how big the client is."
"The solution is a good value for batch processing and huge workloads."
"Databricks are not costly when compared with other solutions' prices."
"We're charged on what the data throughput is and also what the compute time is."
"Databricks uses a price-per-use model, where you can use as much compute as you need."
"The price of Databricks is reasonable compared to other solutions."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
860,592 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
27%
Computer Software Company
22%
Manufacturing Company
5%
University
4%
Financial Services Firm
18%
Computer Software Company
10%
Manufacturing Company
9%
Healthcare Company
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Apache Spark Streaming?
Apache Spark Streaming is versatile. You can use it for competitive intelligence, gathering data from competitors, or for internal tasks like monitoring workflows.
What needs improvement with Apache Spark Streaming?
We don't have enough experience to be judgmental about its flaws, as we've only used stable features like batch micro-batch. Integration poses no problem; however, I don't use some features and can...
What is your primary use case for Apache Spark Streaming?
We use Spark Streaming in a micro-batch region. It's not a full real-time system, but it offers high performance and low latency.
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
Which would you choose - Databricks or Azure Stream Analytics?
Databricks is an easy-to-set-up and versatile tool for data management, analysis, and business analytics. For analytics teams that have to interpret data to further the business goals of their orga...
 

Also Known As

Spark Streaming
Databricks Unified Analytics, Databricks Unified Analytics Platform, Redash
 

Overview

 

Sample Customers

UC Berkeley AMPLab, Amazon, Alibaba Taobao, Kenshoo, eBay Inc.
Elsevier, MyFitnessPal, Sharethrough, Automatic Labs, Celtra, Radius Intelligence, Yesware
Find out what your peers are saying about Apache Spark Streaming vs. Databricks and other solutions. Updated: June 2025.
860,592 professionals have used our research since 2012.