Try our new research platform with insights from 80,000+ expert users

Apache Spark Streaming vs Qlik Talend Cloud comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Nov 18, 2025

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Spark Streaming
Ranking in Streaming Analytics
10th
Average Rating
7.8
Reviews Sentiment
6.4
Number of Reviews
17
Ranking in other categories
No ranking in other categories
Qlik Talend Cloud
Ranking in Streaming Analytics
8th
Average Rating
8.0
Reviews Sentiment
6.5
Number of Reviews
55
Ranking in other categories
Data Integration (6th), Data Quality (2nd), Data Scrubbing Software (1st), Master Data Management (MDM) Software (3rd), Cloud Data Integration (7th), Data Governance (8th), Cloud Master Data Management (MDM) (4th), Integration Platform as a Service (iPaaS) (8th)
 

Mindshare comparison

As of February 2026, in the Streaming Analytics category, the mindshare of Apache Spark Streaming is 3.9%, up from 3.1% compared to the previous year. The mindshare of Qlik Talend Cloud is 2.2%, up from 0.9% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics Market Share Distribution
ProductMarket Share (%)
Qlik Talend Cloud2.2%
Apache Spark Streaming3.9%
Other93.9%
Streaming Analytics
 

Featured Reviews

Himansu Jena - PeerSpot reviewer
Sr Project Manager at Raj Subhatech
Efficient real-time data management and analysis with advanced features
There are various ways we can improve Apache Spark Streaming through best practices. The initial part requires attention to batch interval tuning, which helps small intervals in micro batches based on latency requirements and helps prevent back pressure. We can use data formats such as Parquet or ORC for storage that needs faster reads and leveraging feature predicate push-down optimizations. We can implement serialization which helps with any Kyro in terms of .NET or Java. We have boxing and unboxing serialization for XML and JSON for converting key-pair values stored in browser. We can also implement caching mechanisms for storing and recomputing multiple operations. We can use specified joins which help with smaller databases, and distributed joins can minimize users. We can implement project optimization memory for CPU efficiency, known as Tungsten. Additionally, load balancing, checkpointing, and schema evaluation are areas to consider based on performance and bottlenecks. We can use Bugzilla tools for tracking and Splunk to monitor the performance of process systems, utilization, and performance based on data frames or data sets.
HJ
IT Consultant at a tech services company with 201-500 employees
Has automated recurring data flows and improved accuracy in reporting
The best features of Talend Data Integration are its rich set of components that let you connect to almost any data design intuitive and its strong automation and scheduling capabilities. The TMap component is especially valuable because it allows flexible transformation, joins, and filtering in a single place. I also rely a lot on context variables to manage different environments like Dev, Test, and production, without changing the code. The error handling and logging tools are very helpful for monitoring and troubleshooting, which makes the workflow more reliable. Talend Data Integration has helped our company by automating and standardizing data processes. Before, many of these tasks were done manually, which took more time and often led to errors. With Talend Data Integration, we built automated pipelines that extract, clean, and load data consistently. This not only saves hours of manual effort, but also improves the accuracy and reliability of data. As a result, business teams had faster access to trustworthy information for reporting and decision making, which directly improved efficiency and productivity. Talend Data Integration has had a measurable impact on our organization. By automating daily data loading processes, we reduced manual effort by around three or four hours per day, which saved roughly 60 to 80 hours per month. We also improved data accuracy. Error rates dropped by more than 70% because validation rules were built into the jobs. In addition, reporting teams now receive fresh data at least 50% faster, which means they can make decisions earlier and with more confidence. Overall, Talend Data Integration has increased both efficiency and reliability in our data workflows.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The main benefits of Apache Spark Streaming include cost savings, time savings, and efficiency improvements about data storage."
"Apache Spark Streaming's most valuable feature is near real-time analytics. The developers can build APIs easily for a code-steaming pipeline. The solutions have an ecosystem of integration with other stock services."
"It's the fastest solution on the market with low latency data on data transformations."
"Apache Spark Streaming is versatile. You can use it for competitive intelligence, gathering data from competitors, or for internal tasks like monitoring workflows."
"The platform’s most valuable feature for processing real-time data is its ability to handle continuous data streams."
"As an open-source solution, using it is basically free."
"I appreciate Apache Spark Streaming's micro-batching capabilities; the watermarking functionality and related features are quite good."
"With Apache Spark Streaming's integration with Anaconda and Miniconda with Python, I interact with databases using data frames or data sets in micro versions and create solutions based on business expectations for decision-making, logistic regression, linear regression, or machine learning which provides image or voice record and graphical data for improved accuracy."
"I think Talend is one of the easiest tools for faster implementation compared to other tools."
"I like everything about this product, but the biggest thing is the ease of use."
"It is saving a lot of time. Today, we can mask around a hundred million records in 10 minutes. Masking is one of the key pieces that is used heavily by the business and IT folks. Normally in the software development life cycle, before you project anything into the production environment, you have to test it in the test environment to make sure that when the data goes into production, it works, but these are all production files. For example, we acquired a new company or a new state for which we're going to do the entire back office, which is related to claims processing, payments, and member enrollment every year. If you get the production data and process it again, it becomes a compliance issue. Therefore, for any migrations that are happening, we have developed a new capability called pattern masking. This feature looks at those files, masks that information, and processes it through the system. With this, there is no PHI and PII element, and there is data integrity across different systems. It has seamless integration with different databases. It has components using which you can easily integrate with different databases on the cloud or on-premise. It is a drag and drop kind of tool. Instead of writing a lot of Java code or SQL queries, you can just drag and drop things. It is all very pictorial. It easily tells you where the job is failing. So, you can just go quickly and figure out why it is happening and then fix it."
"​This product speeds up the unit testing and QA for specific test scenarios. As a result, the development output quality can be evaluated and adjusted.​"
"The process of upgrading the software is quite easy."
"The jobs are visual and this has improved collaboration between colleagues. It’s much easier to understand a visual job than a piece of Java code."
"The features that I like the most are the simplicity of the interface, and the ability to quickly develop with a predefined component."
"The most valuable feature lies in the capability to assign data quality issues to different stakeholders, facilitating the tracking and resolution of defective work."
 

Cons

"When dealing with various data types including COBOL, Excel, JSON, video, audio, and MPG files, challenges can arise with incomplete or missing values."
"The debugging aspect could use some improvement."
"There could be an improvement in the area of the user configuration section, it should be less developer-focused and more business user-focused."
"The problem is we need to use it in a certain manner. After that, we need to apply another pipeline for the machine learning processes, and that's what we work on."
"We don't have enough experience to be judgmental about its flaws."
"The problem is we need to use it in a certain manner. After that, we need to apply another pipeline for the machine learning processes, and that's what we work on."
"The service structure of Apache Spark Streaming can improve. There are a lot of issues with memory management and latency. There is no real-time analytics. We recommend it for the use cases where there is a five-second latency, but not for a millisecond, an IOT-based, or the detection anomaly-based. Flink as a service is much better."
"The downside is when you have this the other way around in the columns, it becomes really hard to use."
"Heap space issues plague us consistently. We maxed it out and it runs fine, then it doesn’t, then it does."
"They don't have any AI capabilities. Talend DQ is specifically for data quality, which only has data profiling. With Talend DQ, I cannot generate any reports today, so I need an ETL tool. It provides general Excel files, or I have to create some views. If instead of buying a new tool, Talend provides a reporting capability or solution, it would be great. It will reduce the development effort for creating these kinds of reports. We also manage the infrastructure for Talend. From the licensing perspective, for cloud, they only have seat licenses where one person is tied to one license, but for on-premise, they have concurrent licenses. It would be really awesome if they can provide concurrent licenses for the cloud so that if one person is not there, somebody else can use that license. Currently, it is not possible unless a person deactivates his or her license and moves the same seat license to someone else. We are one of the biggest customers in the central zone of the US for Talend, and this is the feedback that we have provided them again and again, but they come back and say that they aren't able to provide concurrent licenses on the cloud. In version 7.3, there is a feature for tokenization and de-tokenization of data. This is the feature that we are looking for. It is useful if somebody wants to see what we have masked and how do we demask it. This feature is not there in version 7.1. There are also a few other capabilities on the cloud, but we don't yet have a big footprint in the cloud."
"If the SQL input controls could dynamically determine the schema-based on the SQL alone, it would simplify the steps of having to use a manually created and saved schema for use in the TMap for the Postgres and Redshift components. This would make things even easier."
"If we encounter issues, it’s most likely when using the Talend Open Studio. The studio can be slow, get stuck, or crash. But again, it can be caused by the resources of your machine or your connection with the repository. If we encounter issues with the Studio we restart the Studio. In emergencies, we create and use a new workspace."
"What's missing in the Talend MDM Platform is that it's not maintaining technology references. For example, my company needs a reference case if the platform has been implemented for a configuration that's similar to the client's required configuration. Currently, the client is still reluctant to roll out the Talend MDM Platform at a wider level because there's still no reference received from the Talend team."
"The ability to change the code when debugging the JavaScript could be improved."
"When we upgraded to Version 6.4.1, we tried using a GIT repository instead of a SVN repository. After a few incidents where things disappeared and changes were not saved, we decided to go back to a SVN repository."
"I think the subscription-based model is concerning because as I mentioned, some of our other projects are migrating to different tools."
 

Pricing and Cost Advice

"I was using the open-source community version, which was self-hosted."
"On a scale from one to ten, where one is expensive, or not cost-effective, and ten is cheap, I rate the price a seven."
"People pay for Apache Spark Streaming as a service."
"Spark is an affordable solution, especially considering its open-source nature."
"We did not purchase a separate license for DQ. It is part of our data platform suite, and I believe it is well-priced."
"The price of the Talend Data Management Platform is reasonable. The other competing solutions are priced high. Gartner Magic Quadrant identified other solutions, such as Informatica, that are far more expensive."
"License renewal is on a yearly basis."
"Moreover, the pricing structure stands out as highly competitive compared to other offerings in the market, making it a cost-effective choice for users."
"The tool is cheap."
"The price is on a per-user basis. It's a little more expensive than other tools. There aren't any additional costs beyond the standard licensing fee."
"The solution's pricing is very reasonable and half the cost of Informatica."
"I would advise to first take a look and at the Open Studio edition. Figure out what you need and purchase the appropriate license."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
881,733 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
21%
Financial Services Firm
20%
Marketing Services Firm
6%
University
6%
Financial Services Firm
13%
Computer Software Company
10%
Comms Service Provider
7%
Manufacturing Company
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business9
Midsize Enterprise2
Large Enterprise7
By reviewers
Company SizeCount
Small Business20
Midsize Enterprise11
Large Enterprise20
 

Questions from the Community

What do you like most about Apache Spark Streaming?
Apache Spark Streaming is versatile. You can use it for competitive intelligence, gathering data from competitors, or for internal tasks like monitoring workflows.
What needs improvement with Apache Spark Streaming?
One of the improvements we need is in Spark SQL and the machine learning library. I don't think there is too much to work on, but the issue is when we want to use machine learning, we always need t...
What is your primary use case for Apache Spark Streaming?
We work with Apache Spark Streaming for our project because we use that as one of the landing data sources, and we work with it to ensure we can get all of the data before it goes through our data ...
What needs improvement with Talend Data Quality?
I don't use the automated rule management feature in Talend Data Quality that much, so I cannot provide much feedback. I may not know what Talend Data Quality can improve for data quality. I'm not ...
What is your primary use case for Talend Data Quality?
It is for consistency, mainly; data consistency and data quality are our main use cases for the product. Data consistency is the primary purpose we use it for, as we have written rules in Talend Da...
What advice do you have for others considering Talend Data Quality?
Currently, I'm working with batch jobs and don't perform real-time data quality monitoring because of the large data volume. For real-time, we use a different product. I cannot provide details abou...
 

Also Known As

Spark Streaming
Talend Data Quality, Talend Data Management Platform, Talend MDM Platform, Talend Data Streams, Talend Data Integration, Talend Data Integrity and Data Governance
 

Overview

 

Sample Customers

UC Berkeley AMPLab, Amazon, Alibaba Taobao, Kenshoo, eBay Inc.
Aliaxis, Electrocomponents, M¾NCHENER VEREIN, The Sunset Group
Find out what your peers are saying about Apache Spark Streaming vs. Qlik Talend Cloud and other solutions. Updated: December 2025.
881,733 professionals have used our research since 2012.