Try our new research platform with insights from 80,000+ expert users

Azure Data Factory vs Qlik Compose comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 19, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Azure Data Factory
Ranking in Data Integration
3rd
Average Rating
8.0
Reviews Sentiment
6.8
Number of Reviews
93
Ranking in other categories
Cloud Data Warehouse (2nd)
Qlik Compose
Ranking in Data Integration
45th
Average Rating
7.6
Reviews Sentiment
6.5
Number of Reviews
12
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of January 2026, in the Data Integration category, the mindshare of Azure Data Factory is 3.2%, down from 10.0% compared to the previous year. The mindshare of Qlik Compose is 0.9%, down from 1.1% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Integration Market Share Distribution
ProductMarket Share (%)
Azure Data Factory3.2%
Qlik Compose0.9%
Other95.9%
Data Integration
 

Featured Reviews

KandaswamyMuthukrishnan - PeerSpot reviewer
Director at a computer software company with 1,001-5,000 employees
Integrates diverse data sources and streamlines ETL processes effectively
Regarding potential areas of improvement for Azure Data Factory, there is a need for better data transformation, especially since many people are now depending on DataBricks more for connectivity and data integration. Azure Data Factory should consider how to enhance integration or filtering for more transformations, such as integrating with Spark clusters. I am satisfied with Azure Data Factory so far, but I suggest integrating some AI functionality to analyze data during the transition itself, providing insights such as null records, common records, and duplicates without running a separate pipeline or job. The monitoring tools in Azure Data Factory are helpful for optimizing data pipelines; while the current feature is adequate, they can improve by creating a live dashboard to see the online process, including how much percentage has been completed, which will be very helpful for people who are monitoring the pipeline.
Sahil Taneja - PeerSpot reviewer
Principal Consultant/Manager at Tenzing
Easy matching and reconciliation of data
The initial setup was easy for the data warehousing concept. But for a person who is new to ETL and warehousing concepts, it may take some time. If someone is familiar with these concepts, they could understand and learn the tool quickly. However, compared to other tools, the UI is complex. It would be helpful to have a better UI and documentation for new users. As of now, there is a challenge in learning the Compose tool for new users altogether. Qlik Compose was deployed on-premises. But the servers, like the SQL servers were maintained on the cloud—the managed instances.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Azure Data Factory's most valuable features are the packages and the data transformation that it allows us to do, which is more drag and drop, or a visual interface. So, that eases the entire process."
"The workflow automation features in GitLab, particularly its low code/no code approach, are highly beneficial for accelerating development speed. This feature allows for quick creation of pipelines and offers customization options for integration needs, making it versatile for various use cases. GitLab supports a wide range of connectors, catering to a majority of integration needs. Azure Data Factory's virtual enterprise and monitoring capabilities, the visual interface of GitLab makes it user-friendly and easy to teach, facilitating adoption within teams. While the monitoring capabilities are sufficient out of the box, they may not be as comprehensive as dedicated enterprise monitoring tools. GitLab's monitoring features are manageable for production use, with the option to integrate log analytics or create custom dashboards if needed. The data flow feature in Azure Data Factory within GitLab is valuable for data transformation tasks, especially for those who may not have expertise in writing complex code. It simplifies the process of data manipulation and is particularly useful for individuals unfamiliar with Spark coding. While there could be improvements for more flexibility, overall, the data flow feature effectively accomplishes its purpose within GitLab's ecosystem."
"It is easy to deploy workflows and schedule jobs."
"The solution is okay."
"The most valuable features of Azure Data Factory are the flexibility, ability to move data at scale, and the integrations with different Azure components."
"The two most valuable features of Azure Data Factory are that it's very scalable and that it's also highly reliable."
"The most valuable feature is the copy activity."
"I enjoy the ease of use for the backend JSON generator, the deployment solution, and the template management."
"It can scale."
"Qlik Compose is good enough. It is user-friendly and intuitive."
"It's a stable solution."
"One of the most valuable features of this tool is its automation capabilities, allowing us to design the warehouse in an automated manner. Additionally, we can generate Data Lifecycle Policies (DLP) reports and efficiently implement updates and best practices based on proven design patterns."
"The technical support is very good. I rate the technical support a ten out of ten."
"The most valuable is its excellence as a graphical data representation tool and the versatility it offers, especially with drill-down capabilities."
"I have found it to be a very good, stable, and strong product."
"I like modeling and code generation. It has become a pretty handy tool because of its short ideation to delivery time. From the time you decide you are modeling a data warehouse, and once you finish the modeling, it generates all the code, generates all the tables. All you have to do is tick a few things, and you can produce a fully functional warehouse. I also like that they have added all the features I have asked for over four years."
 

Cons

"There is room for improvement primarily in its streaming capabilities. For structured streaming and machine learning model implementation within an ETL process, it lags behind tools like Informatica."
"The solution should offer better integration with Azure machine learning. We should be able to embed the cognitive services from Microsoft, for example as a web API. It should allow us to embed Azure machine learning in a more user-friendly way."
"The tool’s workflow is not user-friendly. It should also improve its orchestration monitoring."
"The product integration with advanced coding options could cater to users needing more customization."
"I rate Azure Data Factory six out of 10 for stability. ADF is stable now, but we had problems recently with indexing on an SQL database. It's slow when dealing with a huge volume of data. It depends on whether the database is configured as general purpose or hyperscale."
"Lacks a decent UI that would give us a view of the kinds of requests that come in."
"The deployment should be easier."
"We have experienced some issues with the integration. This is an area that needs improvement."
"The solution has room for improvement in the ETL. They have an ETL, but when it comes to the monitoring portion, Qlik Compose doesn't provide a feature for monitoring."
"There should be proper documentation available for the implementation process."
"When processing data from certain tables with a large volume of data, we encounter significant delays. For instance, when dealing with around one million records, it typically takes three to four hours. To address this, I aim to implement performance improvements across all tables, ensuring swift processing similar to those that are currently complete within seconds. The performance issue primarily arises when we analyze the inserts and updates from the source, subsequently dropping the table. While new insertions are handled promptly, updates are processed slowly, leading to performance issues. Despite consulting our Qlik vendors, they were unable to pinpoint the exact cause of this occurrence. Consequently, I am seeking ways to optimize performance within Qlik Compose, specifically concerning updates."
"I believe that visual data flow management and the transformation function should be improved."
"There is some scope for improvement around the documentation, and a better UI would definitely help."
"It would be better if the first level of technical support were a bit more technically knowledgeable to solve the problem. I think they could also improve the injection of custom scripts. It is pretty difficult to add additional scripts. If the modeling doesn't give you what you want, and you want to change the script generated by the modeling, it is a bit more challenging than in most other products. It is very good with standard form type systems, but if you get a more complicated data paradigm, it tends to struggle with transforming that into a model."
"My issues with the solution's stability are owing to the fact that it has certain bugs causing issues in some functionalities that should be working."
"Qlik's ETL and data transformation could be better."
 

Pricing and Cost Advice

"For our use case, it is not expensive. We take into the picture everything: resources, learning curve, and maintenance."
"It's not particularly expensive."
"I don't see a cost; it appears to be included in general support."
"Product is priced at the market standard."
"I would rate Data Factory's pricing nine out of ten."
"The licensing is a pay-as-you-go model, where you pay for what you consume."
"The pricing model is based on usage and is not cheap."
"While I can't specify the actual cost, I believe it is reasonably priced and comparable to similar products."
"While they outperform Tableau, there's room for improvement in Qlik's pricing structures, especially for corporate clients like us."
"On a scale of one to ten, where one is cheap, and ten is very expensive, I rate the solution a six."
"The price of the solution is expensive."
report
Use our free recommendation engine to learn which Data Integration solutions are best for your needs.
881,082 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
13%
Computer Software Company
11%
Manufacturing Company
9%
Government
7%
Financial Services Firm
15%
Government
12%
Manufacturing Company
9%
Insurance Company
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business31
Midsize Enterprise19
Large Enterprise57
By reviewers
Company SizeCount
Small Business3
Midsize Enterprise3
Large Enterprise6
 

Questions from the Community

How do you select the right cloud ETL tool?
AWS Glue and Azure Data factory for ELT best performance cloud services.
How does Azure Data Factory compare with Informatica PowerCenter?
Azure Data Factory is flexible, modular, and works well. In terms of cost, it is not too pricey. It offers the stability and reliability I am looking for, good scalability, and is easy to set up an...
How does Azure Data Factory compare with Informatica Cloud Data Integration?
Azure Data Factory is a solid product offering many transformation functions; It has pre-load and post-load transformations, allowing users to apply transformations either in code by using Power Q...
Which ETL tool would you recommend to populate data from OLTP to OLAP?
There are two products I know about * TimeXtender : Microsoft based, Transformation logic is quiet good and can easily be extended with T-SQL , Has a semantic layer that generates metat data for cu...
 

Also Known As

No data available
Compose, Attunity Compose
 

Overview

 

Sample Customers

1. Adobe 2. BMW 3. Coca-Cola 4. General Electric 5. Johnson & Johnson 6. LinkedIn 7. Mastercard 8. Nestle 9. Pfizer 10. Samsung 11. Siemens 12. Toyota 13. Unilever 14. Verizon 15. Walmart 16. Accenture 17. American Express 18. AT&T 19. Bank of America 20. Cisco 21. Deloitte 22. ExxonMobil 23. Ford 24. General Motors 25. IBM 26. JPMorgan Chase 27. Microsoft (Azure Data Factory is developed by Microsoft) 28. Oracle 29. Procter & Gamble 30. Salesforce 31. Shell 32. Visa
Poly-Wood
Find out what your peers are saying about Azure Data Factory vs. Qlik Compose and other solutions. Updated: December 2025.
881,082 professionals have used our research since 2012.