Try our new research platform with insights from 80,000+ expert users

Google Cloud AI Platform vs Microsoft Azure Machine Learning Studio comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Apr 20, 2025

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Google Cloud AI Platform
Ranking in AI Development Platforms
8th
Average Rating
7.8
Reviews Sentiment
7.1
Number of Reviews
9
Ranking in other categories
No ranking in other categories
Microsoft Azure Machine Lea...
Ranking in AI Development Platforms
3rd
Average Rating
7.6
Reviews Sentiment
7.0
Number of Reviews
61
Ranking in other categories
Data Science Platforms (5th)
 

Mindshare comparison

As of May 2025, in the AI Development Platforms category, the mindshare of Google Cloud AI Platform is 4.1%, down from 6.5% compared to the previous year. The mindshare of Microsoft Azure Machine Learning Studio is 7.0%, down from 12.8% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms
 

Featured Reviews

Vipul-Kumar - PeerSpot reviewer
An AI platform AI Platform to train your machine learning models at scale, to host your trained model in the cloud, and to use your model to make predictions about new data
I think it's the it it also has has evolved quite a bit over the last few years, and Google Cloud folks have been getting, more and more services. But I think from a improvement standpoint, so maybe they can look at adding more algorithms, so adding more AI algorithms to their suite.
Takayuki Umehara - PeerSpot reviewer
Streamlined workflows with drag and drop convenience but needs enhancements in AI
I use Machine Learning Studio for system reselling and integration Machine Learning Studio is easy to use, with a significant feature being the drag and drop interface that enhances workflow without any complaints. It provides a return on investment and cost savings, proving beneficial for…

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The platform's Google Vision API is particularly valuable."
"The feedback left about these tools was really helpful and informative for us"
"A range of a a wide range of algorithms, EIM voice mails, which can be plugged in right away into your solution into into into our solution, and then have platform that provides know, to to come up with an operational solution really quick."
"Some of the valuable features are the vast amount of services that are available, such as load balancer, and the AI architecture."
"I have seen measurable benefits from Google Cloud AI Platform."
"On GCP, we are exposing our API services to our clients so that they send us their information. It can be single individual records or it can be a batch of their clients."
"The solution is able to read 90% of the documents correctly with a 10% error rate."
"I think the user interface is quite handy, and it is easy to use as compared to the other cloud platforms."
"In terms of what I found most valuable in Microsoft Azure Machine Learning Studio, I especially love the designer because you can just drag and drop items there and apply the logic that's already available with the designer. I love that I can use the libraries in Microsoft Azure Machine Learning Studio, so I don't have to search for the algorithms and all the relevant libraries because I can see them directly on the designer just by dragging and dropping. Though there's a bit of work during data cleansing, that's normal and can't be avoided. At least it's easy to find the relevant algorithm, apply that algorithm to the data, then get the desired output through Microsoft Azure Machine Learning Studio. I also like the API feature of the solution which is readily available for me to expose the output to any consuming application, so that takes out a lot of headache. Otherwise, I have to have a developer who knows the API, and I have to have an API app, so all that is completely taken care of by the Microsoft Azure Machine Learning Studio designer. With the solution, I can concentrate on how to improve the data quality to get quality recommendations, so this lets me concentrate on my job rather than focusing on the regular development of APIs or the pipelines, in particular, the data pipelines pulling the data from other sources. All the data is taken care of and you can also concentrate on other required auxiliary activities rather than just concentrating on machine learning."
"The solution is really scalable."
"Microsoft Azure Machine Learning Studio offers a hands-on experience with lots of flexibility."
"The notebook feature allows you to write inquiries and create dashboards. These dashboards can integrate with multiple databases, such as Excel, HANA, or SQL Server."
"Split dataset, variety of algorithms, visualizing the data, and drag and drop capability are the features I appreciate most."
"The product is well organized. The thing is how we will get the models to work within our code. We have some suggestions there, but we want to gain more experience and be ready to answer that because we are currently working on this and don't have all the answers yet. The tool is well organized. What I am very happy about is the ease of deploying new resources. You can easily create your pipeline within minutes."
"I like that it's totally easy to use. They have an AutoML solution, and their machine learning model is highly accurate. They also have a feature that can explain the machine learning model. This makes it easy for me to understand that model."
"The solution is very fast and simple for a data science solution."
 

Cons

"I think it's the it it also has has evolved quite a bit over the last few years, and Google Cloud folks have been getting, more and more services. But I think from a improvement standpoint, so maybe they can look at adding more algorithms, so adding more AI algorithms to their suite."
"The initial setup was straightforward for me but could be difficult for others."
"Improvements in text extraction accuracy and pricing adjustments would be helpful."
"At first, there were only the user-managed rules to identify the best attributes of the individual. Then, we came up with a truth set and developed different machine learning models with the help of that truth set, so now it's completely machine learning."
"One thing that I found is that Azure ML does not directly provide you with features on Google Cloud AI Platform, whereas Vertex provides some features of the platform."
"The technical support from Google is not very fast. I think it is about a five out of ten even though they have courses online where I can learn a lot, if I really need support, I have to wait a very long time."
"It could be more clear, and sometimes there are errors that I don't quite understand."
"Customizations are very difficult, and they take time."
"This solution could be improved if they could integrate the data pipeline scheduling part for their interface."
"I would like to see modules to handle Deep Learning frameworks."
"Stability-wise, you may face certain problems when you fail to refresh the data in the solution."
"They should have a desktop version to work on the platform."
"The pricing policy should be improved."
"I rate the support from Microsoft as five out of ten. It could be improved."
"I think it should be made cheaper for certain people…It may appear costlier for those who don't consider time important."
"I think they should improve two things. They should make their user interface more user-friendly. Integration could also be better. Because Microsoft Machine Learning is a Microsoft product, it's fully integrated with Microsoft Azure but not fully supported for other platforms like IBM or AWS or something else."
 

Pricing and Cost Advice

"The licenses are cheap."
"The solution has an attractive starting program, which costs only 300 USD for a duration of three months. During this period, one can accomplish a lot of work on the solution."
"The price of the solution is competitive."
"For every thousand uses, it is about four and a half euros."
"The pricing is on the expensive side."
"From a developer's perspective, I find the price of this solution high."
"To use MLS is fairly cheap. Even the paid account is something like $20/month, unless you are provisioning large numbers of VMs for a Hadoop cluster. The main MS makes money with this solution is forcing the user to deploy their model on REST API, and being charged each time the API is accessed. There are several pricing tiers for the API. If you do not use the API, then value of MLS is to create rapid experiments ($20/month). The resulting model is not exportable to use, thus you’ll have to recreate the algorithms in either R or Python, which is what I did. MLS results gave me a direction to work with, the actual work is mostly done in R and Python outside of MLS."
"The solution operates on a pay-per-use model."
"There isn’t any such expensive costs and only a standard license is required."
"I would rate the pricing an eight out of ten, with ten being very expensive. Not very expensive, not very cheap."
"I rate the solution's pricing a four on a scale of one to ten, where one is cheap, and ten is expensive."
"The platform's price is low."
"The product is not that expensive."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
851,491 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
16%
Financial Services Firm
10%
Manufacturing Company
9%
University
8%
Financial Services Firm
13%
Computer Software Company
10%
Manufacturing Company
10%
Healthcare Company
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What do you like most about Google Cloud AI Platform?
A range of a a wide range of algorithms, EIM voice mails, which can be plugged in right away into your solution into into into our solution, and then have platform that provides know, to to come up...
What is your experience regarding pricing and costs for Google Cloud AI Platform?
For the most part, the pricing is perfect sinceit grows with the use of my app. In some cases, they could be more specific about the pricing, especially for some AI features.
What is your primary use case for Google Cloud AI Platform?
I use Google Cloud AI Platform due to Firebase and the many APIs that are available with it.
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
What do you like most about Microsoft Azure Machine Learning Studio?
The learning curve is very low. Operationalizing the model is also very easy within the Azure ecosystem.
What is your experience regarding pricing and costs for Microsoft Azure Machine Learning Studio?
Pricing is considered to be top-segment and should be improved. I rate the pricing as three or four on a scale of one to ten in terms of affordability.
 

Also Known As

No data available
Azure Machine Learning, MS Azure Machine Learning Studio
 

Overview

 

Sample Customers

Carousell
Walgreens Boots Alliance, Schneider Electric, BP
Find out what your peers are saying about Google Cloud AI Platform vs. Microsoft Azure Machine Learning Studio and other solutions. Updated: April 2025.
851,491 professionals have used our research since 2012.