Try our new research platform with insights from 80,000+ expert users

Google Cloud AI Platform vs Hugging Face comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 4, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Google Cloud AI Platform
Ranking in AI Development Platforms
10th
Average Rating
7.8
Reviews Sentiment
7.1
Number of Reviews
9
Ranking in other categories
No ranking in other categories
Hugging Face
Ranking in AI Development Platforms
2nd
Average Rating
8.2
Reviews Sentiment
7.2
Number of Reviews
14
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of February 2026, in the AI Development Platforms category, the mindshare of Google Cloud AI Platform is 3.2%, down from 4.9% compared to the previous year. The mindshare of Hugging Face is 7.2%, down from 13.2% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms Market Share Distribution
ProductMarket Share (%)
Hugging Face7.2%
Google Cloud AI Platform3.2%
Other89.6%
AI Development Platforms
 

Featured Reviews

TJ
Owner at Go knowledge
Streamlines app development with dynamic databases and an easy setup
I used Oracle APEX before Google Cloud AI Platform. Oracle APEX is a free tool, except for the Oracle database, which I can only use with it. To have more freedom, I chose Firebase and Google's solutions as it allows me to run it on a hosted server if I want to.
SwaminathanSubramanian - PeerSpot reviewer
Director/Enterprise Solutions Architect, Technology Advisor at Kyndryl
Versatility empowers AI concept development despite the multi-GPU challenge
Regarding scalability, I'm finding the multi-GPU aspect of it challenging. Training the model is another hurdle, although I'm only getting into that aspect currently. Organizations are apprehensive about investing in multi-GPU setups. Additionally, data cleanup is a challenge that needs to be resolved, as data must be mature and pristine.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Since the model could be trained in just a couple of hours and deploying it took only a few minutes, the entire process took less than an hour."
"The initial setup is very straightforward."
"A range of a a wide range of algorithms, EIM voice mails, which can be plugged in right away into your solution into into into our solution, and then have platform that provides know, to to come up with an operational solution really quick."
"The solution is able to read 90% of the documents correctly with a 10% error rate."
"The platform's Google Vision API is particularly valuable."
"The feedback left about these tools was really helpful and informative for us"
"I think the user interface is quite handy, and it is easy to use as compared to the other cloud platforms."
"Some of the valuable features are the vast amount of services that are available, such as load balancer, and the AI architecture."
"We have seen improved productivity and time saved from using Hugging Face; for a task that would have taken six hours, it saved us five hours, and we completed it in one hour with the plug-and-play integration of inference and everything, using the few lines of code that Hugging Face provides."
"The solution is easy to use compared to other frameworks like PyTorch and TensorFlow."
"It is stable."
"The tool's most valuable feature is that it shows trending models. All the new models, even Google's demo models, appear at the top. You can find all the open-source models in one place. You can use them directly and easily find their documentation. It's very simple to find documentation and write code. If you want to work with AI and machine learning, Hugging Face is a perfect place to start."
"Hugging Face provides open-source models, making it the best open-source and reliable solution."
"I like that Hugging Face is versatile in the way it has been developed."
"What I find the most valuable about Hugging Face is that I can check all the models on it and see which ones have the best performance without using another platform."
"I appreciate the versatility and the fact that it has generalized many models."
 

Cons

"Customizations are very difficult, and they take time."
"Improvements in text extraction accuracy and pricing adjustments would be helpful."
"I think it's the it it also has has evolved quite a bit over the last few years, and Google Cloud folks have been getting, more and more services. But I think from a improvement standpoint, so maybe they can look at adding more algorithms, so adding more AI algorithms to their suite."
"One thing that I found is that Azure ML does not directly provide you with features on Google Cloud AI Platform, whereas Vertex provides some features of the platform."
"The technical support from Google is not very fast. I think it is about a five out of ten even though they have courses online where I can learn a lot, if I really need support, I have to wait a very long time."
"At first, there were only the user-managed rules to identify the best attributes of the individual. Then, we came up with a truth set and developed different machine learning models with the help of that truth set, so now it's completely machine learning."
"The model management on Google Cloud AI Platform could be better."
"It could be more clear, and sometimes there are errors that I don't quite understand."
"The area that needs improvement would be the organization of the materials. It could be clearer and more systematic. It would be good if the layout was clear and we could search the models easily."
"It can incorporate AI into its services."
"Implementing a cloud system to showcase historical data would be beneficial."
"Regarding scalability, I'm finding the multi-GPU aspect of it challenging."
"I've worked on three projects using Hugging Face, and only once did we encounter a problem with the code. We had to use another open-source embedding from OpenAI to resolve it. Our team has three members: me, my colleague, and a team leader. We looked at the problem and resolved it."
"Access to the models and datasets could be improved. Many interesting ones are restricted."
"Most people upload their pre-trained models on Hugging Face, but more details should be added about the models."
"The initial setup can be rated as a seven out of ten due to occasional issues during model deployment, which might require adjustments."
 

Pricing and Cost Advice

"For every thousand uses, it is about four and a half euros."
"The solution has an attractive starting program, which costs only 300 USD for a duration of three months. During this period, one can accomplish a lot of work on the solution."
"The price of the solution is competitive."
"The licenses are cheap."
"The pricing is on the expensive side."
"Hugging Face is an open-source solution."
"I recall seeing a fee of nine dollars, and there's also an enterprise option priced at twenty dollars per month."
"The tool is open-source. The cost depends on what task you're doing. If you're using a large language model with around 12 million parameters, it will cost more. On average, Hugging Face is open source so you can download models to your local machine for free. For deployment, you can use any cloud service."
"The solution is open source."
"So, it's requires expensive machines to open services or open LLM models."
"We do not have to pay for the product."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
881,707 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
14%
Financial Services Firm
11%
Manufacturing Company
11%
University
8%
University
10%
Comms Service Provider
10%
Manufacturing Company
9%
Financial Services Firm
9%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business5
Midsize Enterprise2
Large Enterprise2
By reviewers
Company SizeCount
Small Business9
Midsize Enterprise2
Large Enterprise3
 

Questions from the Community

What is your experience regarding pricing and costs for Google Cloud AI Platform?
For the most part, the pricing is perfect sinceit grows with the use of my app. In some cases, they could be more specific about the pricing, especially for some AI features.
What is your primary use case for Google Cloud AI Platform?
I use Google Cloud AI Platform due to Firebase and the many APIs that are available with it.
What advice do you have for others considering Google Cloud AI Platform?
I have knowledge of it, and I do recommend Google Cloud AI Platform to other people. I would definitely rate the overall solution as an eight out of ten.
What needs improvement with Hugging Face?
Everything is pretty much sorted in Hugging Face, but it could be improved if there was an AI chatbot or an AI assistant in Hugging Face platform itself, which can guide you through the whole platf...
What is your primary use case for Hugging Face?
My main use case for Hugging Face is to download open-source models and train on a local machine. We use Hugging Face Transformers for simple and fast integration in our applications and AI-based a...
What advice do you have for others considering Hugging Face?
We have seen improved productivity and time saved from using Hugging Face; for a task that would have taken six hours, it saved us five hours, and we completed it in one hour with the plug-and-play...
 

Overview

 

Sample Customers

Carousell
Information Not Available
Find out what your peers are saying about Google Cloud AI Platform vs. Hugging Face and other solutions. Updated: December 2025.
881,707 professionals have used our research since 2012.