Try our new research platform with insights from 80,000+ expert users

Amazon SageMaker vs Hugging Face comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 4, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Amazon SageMaker
Ranking in AI Development Platforms
4th
Average Rating
7.8
Reviews Sentiment
7.0
Number of Reviews
38
Ranking in other categories
Data Science Platforms (2nd)
Hugging Face
Ranking in AI Development Platforms
2nd
Average Rating
8.2
Reviews Sentiment
7.2
Number of Reviews
14
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of February 2026, in the AI Development Platforms category, the mindshare of Amazon SageMaker is 3.7%, down from 6.1% compared to the previous year. The mindshare of Hugging Face is 7.2%, down from 13.2% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms Market Share Distribution
ProductMarket Share (%)
Hugging Face7.2%
Amazon SageMaker3.7%
Other89.1%
AI Development Platforms
 

Featured Reviews

Saurabh Jaiswal - PeerSpot reviewer
Python AWS & AI Expert at a tech consulting company
Create innovative assistants with seamless data integration for large-scale projects
The various integration options available in Amazon SageMaker, such as Firehose for connecting to data pipelines, are simple to use. Tools like AWS Glue integrate well for data transformations. The Databricks integration aids data scientists and engineers. SageMaker is fully managed, offers high availability, flexibility with TensorFlow, PyTorch, and MXNet, and comes with pre-trained algorithms for forecasting, anomaly detection, and more.
SwaminathanSubramanian - PeerSpot reviewer
Director/Enterprise Solutions Architect, Technology Advisor at Kyndryl
Versatility empowers AI concept development despite the multi-GPU challenge
Regarding scalability, I'm finding the multi-GPU aspect of it challenging. Training the model is another hurdle, although I'm only getting into that aspect currently. Organizations are apprehensive about investing in multi-GPU setups. Additionally, data cleanup is a challenge that needs to be resolved, as data must be mature and pristine.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The most valuable features include the ML operations that allow for designing, deploying, testing, and evaluating models."
"The evolution from SageMaker Classic to SageMaker Studio, particularly the UI part of Studio, is commendable."
"Allows you to create API endpoints."
"One of the most valuable features of Amazon SageMaker for me is the one-touch deployment, which simplifies the process greatly."
"The intuitive interface and streamlined user experience make it easy to navigate and set up various tools like Visual Studio Code or Jupyter Notebook."
"The few projects we have done have been promising."
"I recommend SageMaker for ML projects if you need to build models from scratch."
"I have seen a return on investment, probably a factor of four or five."
"There are numerous libraries available, and the documentation is rich and step-by-step, helping us understand which model to use in particular conditions."
"The tool's most valuable feature is that it's open-source and has hundreds of packages already available. This makes it quite helpful for creating our LLMs."
"Hugging Face provides open-source models, making it the best open-source and reliable solution."
"The solution is easy to use compared to other frameworks like PyTorch and TensorFlow."
"Overall, the platform is excellent."
"I appreciate the versatility and the fact that it has generalized many models."
"The product is reliable."
"We have seen improved productivity and time saved from using Hugging Face; for a task that would have taken six hours, it saved us five hours, and we completed it in one hour with the plug-and-play integration of inference and everything, using the few lines of code that Hugging Face provides."
 

Cons

"Improvement is needed in the no-code and low-code capabilities of Amazon SageMaker. This would empower citizen data scientists to utilize the tool more effectively since many data scientists do not have a core development background."
"Improvement is needed in the no-code and low-code capabilities of Amazon SageMaker."
"The product must provide better documentation."
"The main challenge with Amazon SageMaker is the integrations."
"There is room for improvement in the collaboration with serverless architecture, particularly integration with AWS Lambda."
"The documentation must be made clearer and more user-friendly."
"The entry point can be a bit difficult. Having all documentation easily accessible on the front page of SageMaker would be a great improvement."
"There are other better solutions for large data, such as Databricks."
"Regarding scalability, I'm finding the multi-GPU aspect of it challenging."
"I believe Hugging Face has some room for improvement. There are some security issues. They provide code, but API tokens aren't indicated. Also, the documentation for particular models could use more explanation. But I think these things are improving daily. The main change I'd like to see is making the deployment of inference endpoints more customizable for users."
"The solution must provide an efficient LLM."
"Most people upload their pre-trained models on Hugging Face, but more details should be added about the models."
"Access to the models and datasets could be improved."
"I've worked on three projects using Hugging Face, and only once did we encounter a problem with the code. We had to use another open-source embedding from OpenAI to resolve it. Our team has three members: me, my colleague, and a team leader. We looked at the problem and resolved it."
"Access to the models and datasets could be improved. Many interesting ones are restricted."
"Implementing a cloud system to showcase historical data would be beneficial."
 

Pricing and Cost Advice

"I rate the pricing a five on a scale of one to ten, where one is the lowest price, and ten is the highest price. The solution is priced reasonably. There is no additional cost to be paid in excess of the standard licensing fees."
"Databricks solution is less costly than Amazon SageMaker."
"The support costs are 10% of the Amazon fees and it comes by default."
"The pricing is complicated as it is based on what kind of machines you are using, the type of storage, and the kind of computation."
"There is no license required for the solution since you can use it on demand."
"On a scale from one to ten, where one is cheap, and ten is expensive, I rate the solution's pricing a six out of ten."
"In terms of pricing, I'd also rate it ten out of ten because it's been beneficial compared to other solutions."
"The tool's pricing is reasonable."
"The solution is open source."
"We do not have to pay for the product."
"So, it's requires expensive machines to open services or open LLM models."
"The tool is open-source. The cost depends on what task you're doing. If you're using a large language model with around 12 million parameters, it will cost more. On average, Hugging Face is open source so you can download models to your local machine for free. For deployment, you can use any cloud service."
"I recall seeing a fee of nine dollars, and there's also an enterprise option priced at twenty dollars per month."
"Hugging Face is an open-source solution."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
881,707 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
18%
Computer Software Company
10%
Manufacturing Company
9%
University
6%
University
10%
Comms Service Provider
10%
Manufacturing Company
9%
Financial Services Firm
9%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business12
Midsize Enterprise11
Large Enterprise17
By reviewers
Company SizeCount
Small Business9
Midsize Enterprise2
Large Enterprise3
 

Questions from the Community

How would you compare Databricks vs Amazon SageMaker?
We researched AWS SageMaker, but in the end, we chose Databricks. Databricks is a Unified Analytics Platform designed to accelerate innovation projects. It is based on Spark so it is very fast. It...
What do you like most about Amazon SageMaker?
We've had experience with unique ML projects using SageMaker. For example, we're developing a platform similar to ChatGPT that requires models. We utilize Amazon SageMaker to create endpoints for t...
What is your experience regarding pricing and costs for Amazon SageMaker?
If you manage it effectively, their pricing is reasonable. It's similar to anything in the cloud; if you don't manage it properly, it can be expensive, but if you do, it's fine.
What needs improvement with Hugging Face?
Everything is pretty much sorted in Hugging Face, but it could be improved if there was an AI chatbot or an AI assistant in Hugging Face platform itself, which can guide you through the whole platf...
What is your primary use case for Hugging Face?
My main use case for Hugging Face is to download open-source models and train on a local machine. We use Hugging Face Transformers for simple and fast integration in our applications and AI-based a...
What advice do you have for others considering Hugging Face?
We have seen improved productivity and time saved from using Hugging Face; for a task that would have taken six hours, it saved us five hours, and we completed it in one hour with the plug-and-play...
 

Also Known As

AWS SageMaker, SageMaker
No data available
 

Overview

 

Sample Customers

DigitalGlobe, Thomson Reuters Center for AI and Cognitive Computing, Hotels.com, GE Healthcare, Tinder, Intuit
Information Not Available
Find out what your peers are saying about Amazon SageMaker vs. Hugging Face and other solutions. Updated: December 2025.
881,707 professionals have used our research since 2012.