Try our new research platform with insights from 80,000+ expert users

Hugging Face vs Microsoft Azure Machine Learning Studio comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 4, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Hugging Face
Ranking in AI Development Platforms
3rd
Average Rating
8.2
Reviews Sentiment
7.1
Number of Reviews
13
Ranking in other categories
No ranking in other categories
Microsoft Azure Machine Lea...
Ranking in AI Development Platforms
5th
Average Rating
7.8
Reviews Sentiment
7.1
Number of Reviews
62
Ranking in other categories
Data Science Platforms (4th)
 

Mindshare comparison

As of October 2025, in the AI Development Platforms category, the mindshare of Hugging Face is 11.4%, up from 11.3% compared to the previous year. The mindshare of Microsoft Azure Machine Learning Studio is 4.6%, down from 9.9% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms Market Share Distribution
ProductMarket Share (%)
Hugging Face11.4%
Microsoft Azure Machine Learning Studio4.6%
Other84.0%
AI Development Platforms
 

Featured Reviews

SwaminathanSubramanian - PeerSpot reviewer
Versatility empowers AI concept development despite the multi-GPU challenge
Regarding scalability, I'm finding the multi-GPU aspect of it challenging. Training the model is another hurdle, although I'm only getting into that aspect currently. Organizations are apprehensive about investing in multi-GPU setups. Additionally, data cleanup is a challenge that needs to be resolved, as data must be mature and pristine.
Takayuki Umehara - PeerSpot reviewer
Streamlined workflows with drag and drop convenience but needs enhancements in AI
I use Machine Learning Studio for system reselling and integration Machine Learning Studio is easy to use, with a significant feature being the drag and drop interface that enhances workflow without any complaints. It provides a return on investment and cost savings, proving beneficial for…

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The tool's most valuable feature is that it shows trending models. All the new models, even Google's demo models, appear at the top. You can find all the open-source models in one place. You can use them directly and easily find their documentation. It's very simple to find documentation and write code. If you want to work with AI and machine learning, Hugging Face is a perfect place to start."
"I appreciate the versatility and the fact that it has generalized many models."
"I like that Hugging Face is versatile in the way it has been developed."
"There are numerous libraries available, and the documentation is rich and step-by-step, helping us understand which model to use in particular conditions."
"The solution is easy to use compared to other frameworks like PyTorch and TensorFlow."
"My preferred aspects are natural language processing and question-answering."
"What I find the most valuable about Hugging Face is that I can check all the models on it and see which ones have the best performance without using another platform."
"Hugging Face provides open-source models, making it the best open-source and reliable solution."
"Regarding the technical support for the solution, I find the documentation provided comprehensive and helpful."
"ML Studio is very easy to maintain."
"The product is well organized. The thing is how we will get the models to work within our code. We have some suggestions there, but we want to gain more experience and be ready to answer that because we are currently working on this and don't have all the answers yet. The tool is well organized. What I am very happy about is the ease of deploying new resources. You can easily create your pipeline within minutes."
"The most valuable feature is the knowledge bank, which allows us to ask questions and the AI will automatically pull the pre-prescribed responses."
"The solution's most beneficial feature is its integration with Azure."
"The UI is very user-friendly and that AI is easy to use."
"The platform as a service provides user-friendly instruments, making the experience easy."
"The learning curve is very low. Operationalizing the model is also very easy within the Azure ecosystem."
 

Cons

"Most people upload their pre-trained models on Hugging Face, but more details should be added about the models."
"The area that needs improvement would be the organization of the materials. It could be clearer and more systematic. It would be good if the layout was clear and we could search the models easily."
"I've worked on three projects using Hugging Face, and only once did we encounter a problem with the code. We had to use another open-source embedding from OpenAI to resolve it. Our team has three members: me, my colleague, and a team leader. We looked at the problem and resolved it."
"Implementing a cloud system to showcase historical data would be beneficial."
"Regarding scalability, I'm finding the multi-GPU aspect of it challenging."
"Access to the models and datasets could be improved. Many interesting ones are restricted."
"The solution must provide an efficient LLM."
"I believe Hugging Face has some room for improvement. There are some security issues. They provide code, but API tokens aren't indicated. Also, the documentation for particular models could use more explanation. But I think these things are improving daily. The main change I'd like to see is making the deployment of inference endpoints more customizable for users."
"Technical support could improve their turnaround time."
"The data cleaning functionality is something that could be better and needs to be improved."
"The speed of deployment should be faster, as should testing."
"In the Machine Learning Studio, particularly the Designer part, which is essentially Azure's demo designer, there is room for improvement. Many customers and users tend to switch to Microsoft Azure Multi-Joiners, which is a more basic version, but they do so internally. One area that could use enhancement is the process of connecting components. Currently, every time you want to connect a component, such as linking it to your storage or an instance like EC2, you have to input your username and password repeatedly. This can be quite cumbersome. Google, for instance, has made it more user-friendly by allowing easy access for connecting services within a workspace. In a workspace, you can set up various resources like storage, a database cluster, machine learning studio, and more. When connecting these services, there's no need to enter your username and password each time, making it a more efficient process. Another aspect to consider is the role of the designer, and they were to integrate a large language model to handle various tasks, it could significantly enhance the overall scalability and usability of the platform."
"Overall, the icons in the solution could be improved to provide better guidance to users. Additionally, the setup process for the solution could be made easier."
"Machine Learning Studio is more dependent on legacy Machine Learning algorithms. It would be beneficial for them to incorporate more services required for LLMs or LLM evaluation."
"I think it should be made cheaper for certain people…It may appear costlier for those who don't consider time important."
"One area where Azure Machine Learning Studio could improve is its user interface structure."
 

Pricing and Cost Advice

"The solution is open source."
"So, it's requires expensive machines to open services or open LLM models."
"We do not have to pay for the product."
"Hugging Face is an open-source solution."
"The tool is open-source. The cost depends on what task you're doing. If you're using a large language model with around 12 million parameters, it will cost more. On average, Hugging Face is open source so you can download models to your local machine for free. For deployment, you can use any cloud service."
"I recall seeing a fee of nine dollars, and there's also an enterprise option priced at twenty dollars per month."
"I am paying for it following a pay-as-you-go. So, the more I use it, the more it costs."
"In terms of pricing, for any cloud solution, you should know the tricks of the trade and how to use it, otherwise, you'll end up paying a lot of money irrespective of the cloud provider, so at least for Microsoft Azure Machine Learning Studio pricing versus AWS, I would rate it three out of five, with one being the most expensive, and five being the cheapest. It could be cheaper, but you also have to be careful when choosing the plans, for example, consider the architecture and a lot of other factors before choosing your plan, if you don't want to end up paying more. If your cloud provider has an optimizer that seems to be available in every provider, that would keep alerting you in terms of resources not being used as much, then that would help you with budgeting."
"I would rate the pricing an eight out of ten, with ten being very expensive. Not very expensive, not very cheap."
"I rate the product price as a nine on a scale of one to ten, where ten means it is very expensive."
"It is less expensive than one of its competitors."
"On a scale from one to ten, with ten being overpriced, I would rate the price of this solution at six."
"My team didn't deal with the licensing for Microsoft Azure Machine Learning Studio, so I'm unable to comment on pricing, but the money that was spent on the tool was worth it."
"When we got our first models and were ready for the user acceptance testing, our licensing fees were between €2,500 ($2,750 USD) and €3,000 ($3,300 USD) monthly."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
868,759 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
10%
University
10%
Financial Services Firm
9%
Comms Service Provider
9%
Financial Services Firm
12%
Computer Software Company
9%
Manufacturing Company
9%
University
5%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business8
Midsize Enterprise2
Large Enterprise3
By reviewers
Company SizeCount
Small Business23
Midsize Enterprise6
Large Enterprise30
 

Questions from the Community

What do you like most about Hugging Face?
My preferred aspects are natural language processing and question-answering.
What needs improvement with Hugging Face?
It is challenging to suggest specific improvements for Hugging Face, as their platform is already very well-organized and efficient. However, they could focus on cleaning up outdated models if they...
What is your primary use case for Hugging Face?
I am working on AI with various large language models for different purposes such as medicine and law, where they are fine-tuned with specific requirements. I download LLMs from Hugging Face for th...
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
What do you like most about Microsoft Azure Machine Learning Studio?
The learning curve is very low. Operationalizing the model is also very easy within the Azure ecosystem.
What is your experience regarding pricing and costs for Microsoft Azure Machine Learning Studio?
The pricing for Microsoft Azure Machine Learning Studio is reasonable since it's pay as you go, meaning it won't cost excessively unless specific resources are used.
 

Also Known As

No data available
Azure Machine Learning, MS Azure Machine Learning Studio
 

Overview

 

Sample Customers

Information Not Available
Walgreens Boots Alliance, Schneider Electric, BP
Find out what your peers are saying about Hugging Face vs. Microsoft Azure Machine Learning Studio and other solutions. Updated: September 2025.
868,759 professionals have used our research since 2012.