Try our new research platform with insights from 80,000+ expert users

Spring Cloud Data Flow vs StreamSets comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 19, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Spring Cloud Data Flow
Ranking in Data Integration
20th
Average Rating
7.8
Reviews Sentiment
6.8
Number of Reviews
9
Ranking in other categories
Streaming Analytics (11th)
StreamSets
Ranking in Data Integration
21st
Average Rating
8.4
Reviews Sentiment
7.0
Number of Reviews
21
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of February 2026, in the Data Integration category, the mindshare of Spring Cloud Data Flow is 1.2%, up from 1.0% compared to the previous year. The mindshare of StreamSets is 1.2%, down from 1.6% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Integration Market Share Distribution
ProductMarket Share (%)
Spring Cloud Data Flow1.2%
StreamSets1.2%
Other97.6%
Data Integration
 

Featured Reviews

LN
Senior Software Engineer at QBE Regional Insurance
Provides ease of integration with other cloud platforms
Spring Cloud Data Flow is a useful product if I consider how there are different providers with whom my company had to deal, and most of them offer cloud-based products. I can't explain any crucial circumstances where the product's integration capabilities were helpful, but the aforementioned details explain the scenario for which I used the solution. I was only involved with the development of the product and not with the data pipeline configuration phase. The use of Spring Cloud Data Flow greatly impacted projects' time to market since our company's intention was to actually deploy and ensure that the payment platform integrated with it, which was an easy process. The product's user interface was very intuitive. The tool was deployed in multiple environments, but I am not sure about the production. From the time I started taking up the job in my current organization, I saw that we have deployed the tool in multiple environments wherein the number of users extensively used the product in the UAT environment, which is one of the most stable environments. There were 20 different methods to test the tool. I wouldn't be able to tell you the production details of the tool as I was more part of the production deployment, but I can say that it was deployed with the intent of making it available for 10,000 users. Those who plan to use the product should enjoy the flexibility of the solution. I rate the tool a nine out of ten.
SS
Enterprise Solutions Architect at a energy/utilities company with 1,001-5,000 employees
Enables effective batch loading with visual interface and enterprise support
One issue I observed with StreamSets is that the memory runs out quickly when processing large volumes of data. Because of this memory issue, we have to upgrade our EC2 boxes in the Amazon AWS infrastructure. I had to switch to a new EC2 box, even though the processor was not fully utilized. It would be beneficial if StreamSets addressed any potential memory leak issues to prevent unnecessary upgrades. Additionally, it would be a great enhancement if StreamSets could produce a lineage graph to visualize how the data has passed through the system.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"There are a lot of options in Spring Cloud. It's flexible in terms of how we can use it. It's a full infrastructure."
"The ease of deployment on Kubernetes, the seamless integration for orchestration of various pipelines, and the visual dashboard that simplifies operations even for non-specialists such as quality analysts."
"The best thing I like about Spring Cloud Data Flow is its plug-and-play model."
"The most valuable feature is real-time streaming."
"The solution's most valuable feature is that it allows us to use different batch data sources, retrieve the data, and then do the data processing, after which we can convert and store it in the target."
"The dashboards in Spring Cloud Dataflow are quite valuable."
"The product is very user-friendly."
"The most valuable features of Spring Cloud Data Flow are the simple programming model, integration, dependency Injection, and ability to do any injection. Additionally, auto-configuration is another important feature because we don't have to configure the database and or set up the boilerplate in the database in every project. The composability is good, we can create small workloads and compose them in any way we like."
"The entire user interface is very simple and the simplicity of creating pipelines is something that I like very much about it. The design experience is very smooth."
"StreamSets is the leader in the market."
"It is really easy to set up and the interface is easy to use."
"The most valuable would be the GUI platform that I saw. I first saw it at a special session that StreamSets provided towards the end of the summer. I saw the way you set it up and how you have different processes going on with your data. The design experience seemed to be pretty straightforward to me in terms of how you drag and drop these nodes and connect them with arrows."
"StreamSets Transformer is a good feature because it helps you when you are developing applications and when you don't want to write a lot of code. That is the best feature overall."
"For me, the most valuable features in StreamSets have to be the Data Collector and Control Hub, but especially the Data Collector. That feature is very elegant and seamlessly works with numerous source systems."
"StreamSets data drift feature gives us an alert upfront so we know that the data can be ingested. Whatever the schema or data type changes, it lands automatically into the data lake without any intervention from us, but then that information is crucial to fix for downstream pipelines, which process the data into models, like Tableau and Power BI models. This is actually very useful for us. We are already seeing benefits. Our pipelines used to break when there were data drift changes, then we needed to spend about a week fixing it. Right now, we are saving one to two weeks. Though, it depends on the complexity of the pipeline, we are definitely seeing a lot of time being saved."
"Also, the intuitive canvas for designing all the streams in the pipeline, along with the simplicity of the entire product are very big pluses for me. The software is very simple and straightforward. That is something that is needed right now."
 

Cons

"There were instances of deployment pipelines getting stuck, and the dashboard not always accurately showing the application status, requiring manual intervention such as rerunning applications or refreshing the dashboard."
"Spring Cloud Data Flow could improve the user interface. We can drag and drop in the application for the configuration and settings, and deploy it right from the UI, without having to run a CI/CD pipeline. However, that does not work with Kubernetes, it only works when we are working with jars as the Spring Cloud Data Flow applications."
"The configurations could be better. Some configurations are a little bit time-consuming in terms of trying to understand using the Spring Cloud documentation."
"On the tool's online discussion forums, you may get stuck with an issue, making it an area where improvements are required."
"Some of the features, like the monitoring tools, are not very mature and are still evolving."
"I would improve the dashboard features as they are not very user-friendly."
"Spring Cloud Data Flow is not an easy-to-use tool, so improvements are required."
"The solution's community support could be improved."
"StreamSet works great for batch processing but we are looking for something that is more real-time. We need latency in numbers below milliseconds."
"The documentation is inadequate and has room for improvement because the technical support does not regularly update their documentation or the knowledge base."
"We've seen a couple of cases where it appears to have a memory leak or a similar problem."
"One issue I observed with StreamSets is that the memory runs out quickly when processing large volumes of data. Because of this memory issue, we have to upgrade our EC2 boxes in the Amazon AWS infrastructure."
"Sometimes, it is not clear at first how to set up nodes. A site with an explanation of how each node works would be very helpful."
"StreamSets should provide a mechanism to be able to perform data quality assessment when the data is being moved from one source to the target."
"The monitoring visualization is not that user-friendly. It should include other features to visualize things, like how many records were streamed from a source to a destination on a particular date."
"Visualization and monitoring need to be improved and refined."
 

Pricing and Cost Advice

"This is an open-source product that can be used free of charge."
"If you want support from Spring Cloud Data Flow there is a fee. The Spring Framework is open-source and this is a free solution."
"The solution provides value for money, and we are currently using its community edition."
"The pricing is affordable for any business."
"The overall cost is very flexible so it is not a burden for our organization... However, the cost should be improved. For small and mid-size organizations it might be a challenge."
"It has a CPU core-based licensing, which works for us and is quite good."
"StreamSets is an expensive solution."
"StreamSets Data Collector is open source. One can utilize the StreamSets Data Collector, but the Control Hub is the main repository where all the jobs are present. Everything happens in Control Hub."
"The licensing is expensive, and there are other costs involved too. I know from using the software that you have to buy new features whenever there are new updates, which I don't really like. But initially, it was very good."
"Its pricing is pretty much up to the mark. For smaller enterprises, it could be a big price to pay at the initial stage of operations, but the moment you have the Seed B or Seed C funding and you want to scale up your operations and aren't much worried about the funds, at that point in time, you would need a solution that could be scaled."
"It's not so favorable for small companies."
report
Use our free recommendation engine to learn which Data Integration solutions are best for your needs.
881,707 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
20%
Computer Software Company
12%
Retailer
8%
Healthcare Company
5%
Insurance Company
8%
Financial Services Firm
8%
Manufacturing Company
8%
Computer Software Company
7%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business3
Midsize Enterprise1
Large Enterprise5
By reviewers
Company SizeCount
Small Business9
Midsize Enterprise2
Large Enterprise11
 

Questions from the Community

What needs improvement with Spring Cloud Data Flow?
There were instances of deployment pipelines getting stuck, and the dashboard not always accurately showing the application status, requiring manual intervention such as rerunning applications or r...
What is your primary use case for Spring Cloud Data Flow?
We had a project for content management, which involved multiple applications each handling content ingestion, transformation, enrichment, and storage for different customers independently. We want...
What advice do you have for others considering Spring Cloud Data Flow?
I would definitely recommend Spring Cloud Data Flow. It requires minimal additional effort or time to understand how it works, and even non-specialists can use it effectively with its friendly docu...
What do you like most about StreamSets?
The best thing about StreamSets is its plugins, which are very useful and work well with almost every data source. It's also easy to use, especially if you're comfortable with SQL. You can customiz...
What needs improvement with StreamSets?
One issue I observed with StreamSets is that the memory runs out quickly when processing large volumes of data. Because of this memory issue, we have to upgrade our EC2 boxes in the Amazon AWS infr...
What is your primary use case for StreamSets?
We are using StreamSets for batch loading.
 

Overview

 

Sample Customers

Information Not Available
Availity, BT Group, Humana, Deluxe, GSK, RingCentral, IBM, Shell, SamTrans, State of Ohio, TalentFulfilled, TechBridge
Find out what your peers are saying about Spring Cloud Data Flow vs. StreamSets and other solutions. Updated: February 2026.
881,707 professionals have used our research since 2012.