Try our new research platform with insights from 80,000+ expert users

Amazon Kinesis vs Spring Cloud Data Flow comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 17, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Amazon Kinesis
Ranking in Streaming Analytics
2nd
Average Rating
8.0
Reviews Sentiment
7.0
Number of Reviews
29
Ranking in other categories
No ranking in other categories
Spring Cloud Data Flow
Ranking in Streaming Analytics
11th
Average Rating
7.8
Reviews Sentiment
6.8
Number of Reviews
9
Ranking in other categories
Data Integration (20th)
 

Mindshare comparison

As of February 2026, in the Streaming Analytics category, the mindshare of Amazon Kinesis is 5.4%, down from 9.0% compared to the previous year. The mindshare of Spring Cloud Data Flow is 3.8%, down from 4.9% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics Market Share Distribution
ProductMarket Share (%)
Amazon Kinesis5.4%
Spring Cloud Data Flow3.8%
Other90.8%
Streaming Analytics
 

Featured Reviews

CD
AWS Cloud Architect at a healthcare company with 10,001+ employees
Real-time streaming and seamless integration enhance workloads with room for competitive pricing improvements
Amazon Kinesis is easy to get started with, provides good documentation, and has a multilang daemon interface that makes it programming-language agnostic. The throughput is convenient for processing volumes out of the box and does not require complex configurations. It also provides auto-scaling with different partition keys into various shards. Lambda's scalability, seamless integration with other AWS services, and support for multiple programming languages are very beneficial.
LN
Senior Software Engineer at QBE Regional Insurance
Provides ease of integration with other cloud platforms
Spring Cloud Data Flow is a useful product if I consider how there are different providers with whom my company had to deal, and most of them offer cloud-based products. I can't explain any crucial circumstances where the product's integration capabilities were helpful, but the aforementioned details explain the scenario for which I used the solution. I was only involved with the development of the product and not with the data pipeline configuration phase. The use of Spring Cloud Data Flow greatly impacted projects' time to market since our company's intention was to actually deploy and ensure that the payment platform integrated with it, which was an easy process. The product's user interface was very intuitive. The tool was deployed in multiple environments, but I am not sure about the production. From the time I started taking up the job in my current organization, I saw that we have deployed the tool in multiple environments wherein the number of users extensively used the product in the UAT environment, which is one of the most stable environments. There were 20 different methods to test the tool. I wouldn't be able to tell you the production details of the tool as I was more part of the production deployment, but I can say that it was deployed with the intent of making it available for 10,000 users. Those who plan to use the product should enjoy the flexibility of the solution. I rate the tool a nine out of ten.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"From my experience, one of the most valuable features is the ability to track silent events on endpoints. Previously, these events might have gone unnoticed, but now we can access them within the product range. For example, if a customer reports that their calls are not reaching the portal files, we can use this feature to troubleshoot and optimize the system."
"I have worked in companies that build tools in-house. They face scaling challenges."
"The most valuable feature is that it has a pretty robust way of capturing things."
"I find almost all features valuable, especially the timing and fast pace movement."
"The most valuable feature of Amazon Kinesis is real-time data streaming."
"Amazon Kinesis also provides us with plenty of flexibility."
"The integration capabilities of the product are good."
"The feature that I've found most valuable is the replay. That is one of the most valuable in our business. We are business-to-business so replay was an important feature - being able to replay for 24 hours. That's an important feature."
"The solution's most valuable feature is that it allows us to use different batch data sources, retrieve the data, and then do the data processing, after which we can convert and store it in the target."
"The most valuable features of Spring Cloud Data Flow are the simple programming model, integration, dependency Injection, and ability to do any injection. Additionally, auto-configuration is another important feature because we don't have to configure the database and or set up the boilerplate in the database in every project. The composability is good, we can create small workloads and compose them in any way we like."
"The ease of deployment on Kubernetes, the seamless integration for orchestration of various pipelines, and the visual dashboard that simplifies operations even for non-specialists such as quality analysts."
"The most valuable feature is real-time streaming."
"There are a lot of options in Spring Cloud. It's flexible in terms of how we can use it. It's a full infrastructure."
"The product is very user-friendly."
"The best thing I like about Spring Cloud Data Flow is its plug-and-play model."
"The dashboards in Spring Cloud Dataflow are quite valuable."
 

Cons

"Something else to mention is that we use Kinesis with Lambda a lot and the fact that you can only connect one Stream to one Lambda, I find is a limiting factor. I would definitely recommend to remove that constraint."
"AI processing or cleaning up data would be nice since I don't think it is a feature in Amazon Kinesis right now."
"There are some kind of hard limits on Amazon Kinesis, and if you hit that, then you will get the throughput exceed error."
"Snapshot from the the from the the stream of the data analytic I have already on the cloud, do a snapshot to not to make great or to get the data out size of the web service. But to stop the process and restart a few weeks later when I have more data or more available of the client teams."
"Could include features that make it easier to scale."
"One thing that would be nice would be a policy for increasing the number of Kinesis streams because that's the one thing that's constant. You can change it in real time, but somebody has to change it, or you have to set some kind of meter. So, auto-scaling of adding and removing streams would be nice."
"One area for improvement in the solution is the file size limitation of 10 Mb. My company works with files with a larger file size. The batch size and throughput also need improvement in Amazon Kinesis."
"Amazon Kinesis could improve its pricing to be more competitive, especially for large volumes."
"The configurations could be better. Some configurations are a little bit time-consuming in terms of trying to understand using the Spring Cloud documentation."
"The solution's community support could be improved."
"Spring Cloud Data Flow is not an easy-to-use tool, so improvements are required."
"There were instances of deployment pipelines getting stuck, and the dashboard not always accurately showing the application status, requiring manual intervention such as rerunning applications or refreshing the dashboard."
"Some of the features, like the monitoring tools, are not very mature and are still evolving."
"On the tool's online discussion forums, you may get stuck with an issue, making it an area where improvements are required."
"I would improve the dashboard features as they are not very user-friendly."
"Spring Cloud Data Flow could improve the user interface. We can drag and drop in the application for the configuration and settings, and deploy it right from the UI, without having to run a CI/CD pipeline. However, that does not work with Kubernetes, it only works when we are working with jars as the Spring Cloud Data Flow applications."
 

Pricing and Cost Advice

"I think for us, with Amazon Kinesis, if we have to set up our own Kafka or cluster, it will be very time-consuming. If one considers the aforementioned aspect, Amazon Kinesis is a cheap tool."
"It was actually a fairly high volume we were spending. We were spending about 150 a month."
"In general, cloud services are very convenient to use, even if we have to pay a bit more, as we know what we are paying for and can focus on other tasks."
"The pricing depends on the use cases and the level of usage. If you wanted to use Kinesis for different use cases, there's definitely a cheaper base cost involved. However, it's not entirely cheap, as different use cases might require different levels of Kinesis usage."
"Amazon Kinesis pricing is sometimes reasonable and sometimes could be better, depending on the planning, so it's a five out of ten for me."
"The tool's entry price is cheap. However, pricing increases with data volume."
"The tool's pricing is cheap."
"Under $1,000 per month."
"If you want support from Spring Cloud Data Flow there is a fee. The Spring Framework is open-source and this is a free solution."
"The solution provides value for money, and we are currently using its community edition."
"This is an open-source product that can be used free of charge."
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
881,707 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
17%
Financial Services Firm
14%
Manufacturing Company
6%
Comms Service Provider
5%
Financial Services Firm
20%
Computer Software Company
12%
Retailer
8%
Healthcare Company
5%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business8
Midsize Enterprise10
Large Enterprise9
By reviewers
Company SizeCount
Small Business3
Midsize Enterprise1
Large Enterprise5
 

Questions from the Community

What do you like most about Amazon Kinesis?
Amazon Kinesis's main purpose is to provide near real-time data streaming at a consistent 2Mbps rate, which is really impressive.
What is your experience regarding pricing and costs for Amazon Kinesis?
Amazon Kinesis and Lambda pricing is competitive, but we noticed that scaling and large volumes could potentially increase costs significantly.
What needs improvement with Amazon Kinesis?
We are contemplating moving away from Amazon Kinesis primarily because of the cost. It is very useful, but if we write our own analytics and data processing pipeline, it would be much cheaper for u...
What needs improvement with Spring Cloud Data Flow?
There were instances of deployment pipelines getting stuck, and the dashboard not always accurately showing the application status, requiring manual intervention such as rerunning applications or r...
What is your primary use case for Spring Cloud Data Flow?
We had a project for content management, which involved multiple applications each handling content ingestion, transformation, enrichment, and storage for different customers independently. We want...
What advice do you have for others considering Spring Cloud Data Flow?
I would definitely recommend Spring Cloud Data Flow. It requires minimal additional effort or time to understand how it works, and even non-specialists can use it effectively with its friendly docu...
 

Also Known As

Amazon AWS Kinesis, AWS Kinesis, Kinesis
No data available
 

Overview

 

Sample Customers

Zillow, Netflix, Sonos
Information Not Available
Find out what your peers are saying about Amazon Kinesis vs. Spring Cloud Data Flow and other solutions. Updated: December 2025.
881,707 professionals have used our research since 2012.