Try our new research platform with insights from 80,000+ expert users

Apache Flink vs SAS Event Stream Processing comparison

 

Comparison Buyer's Guide

Executive Summary

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Flink
Ranking in Streaming Analytics
5th
Average Rating
7.8
Reviews Sentiment
6.9
Number of Reviews
18
Ranking in other categories
No ranking in other categories
SAS Event Stream Processing
Ranking in Streaming Analytics
27th
Average Rating
8.0
Reviews Sentiment
6.7
Number of Reviews
1
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of May 2025, in the Streaming Analytics category, the mindshare of Apache Flink is 13.8%, up from 9.6% compared to the previous year. The mindshare of SAS Event Stream Processing is 0.5%, up from 0.3% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics
 

Featured Reviews

Aswini Atibudhi - PeerSpot reviewer
Enables robust real-time data processing but documentation needs refinement
Apache Flink is very powerful, but it can be challenging for beginners because it requires prior experience with similar tools and technologies, such as Kafka and batch processing. It's essential to have a clear foundation; hence, it can be tough for beginners. However, once they grasp the concepts and have examples or references, it becomes easier. Intermediate users who are integrating with Kafka or other sources may find it smoother. After setting up and understanding the concepts, it becomes quite stable and scalable, allowing for customization of jobs. Every ( /products/every-reviews ) software, including Apache Flink, has room for improvement as it evolves. One key area for enhancement is user-friendliness and the developer experience; improving documentation and API specifications is essential, as they can currently be verbose and complex. Debugging ( /categories/debugging ) and local testing pose challenges for newcomers, particularly when learning about concepts such as time semantics and state handling. Although the APIs exist, they aren't intuitive enough. We also need to simplify operational procedures, such as developing tools and tuning Flink clusters, as these processes can be quite complex. Additionally, implementing one-click rollback for failures and improving state management during dynamic scaling while retaining the last states is vital, as the current large states pose scaling challenges.
Roi Jason Buela - PeerSpot reviewer
A solution with useful windowing features and great for operations and marketing
The persistence could be better. Although ESP is designed for in-memory processing, it would be better if the solution is enhanced or improved on the persistence of the data that is kept in the memory. For example, if one server goes down and the information is stored in the memory, it is lost. Therefore, the persistence needs to be improved so that if there are more cases where the server is down, the information and data can still be intact.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Apache Flink's best feature is its data streaming tool."
"The top feature of Apache Flink is its low latency for fast, real-time data. Another great feature is the real-time indicators and alerts which make a big difference when it comes to data processing and analysis."
"What I appreciate best about Apache Flink is that it's open source and geared towards a distributed stream processing framework."
"Apache Flink offers a range of powerful configurations and experiences for development teams. Its strength lies in its development experience and capabilities."
"Apache Flink allows you to reduce latency and process data in real-time, making it ideal for such scenarios."
"It is user-friendly and the reporting is good."
"Apache Flink is meant for low latency applications. You take one event opposite if you want to maintain a certain state. When another event comes and you want to associate those events together, in-memory state management was a key feature for us."
"The ease of usage, even for complex tasks, stands out."
"The solution is beneficial on an enterprise level."
 

Cons

"The state maintains checkpoints and they use RocksDB or S3. They are good but sometimes the performance is affected when you use RocksDB for checkpointing."
"In terms of stability with Flink, it is something that you have to deal with every time. Stability is the number one problem that we have seen with Flink, and it really depends on the kind of problem that you're trying to solve."
"In a future release, they could improve on making the error descriptions more clear."
"Apache Flink's documentation should be available in more languages."
"The machine learning library is not very flexible."
"Apache Flink should improve its data capability and data migration."
"PyFlink is not as fully featured as Python itself, so there are some limitations to what you can do with it."
"Amazon's CloudFormation templates don't allow for direct deployment in the private subnet."
"The persistence could be better."
 

Pricing and Cost Advice

"This is an open-source platform that can be used free of charge."
"It's an open source."
"Apache Flink is open source so we pay no licensing for the use of the software."
"It's an open-source solution."
"The solution is open-source, which is free."
Information not available
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
851,604 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
24%
Computer Software Company
14%
Manufacturing Company
7%
Retailer
5%
No data available
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
 

Questions from the Community

What do you like most about Apache Flink?
The product helps us to create both simple and complex data processing tasks. Over time, it has facilitated integration and navigation across multiple data sources tailored to each client's needs. ...
What is your experience regarding pricing and costs for Apache Flink?
The solution is expensive. I rate the product’s pricing a nine out of ten, where one is cheap and ten is expensive.
What needs improvement with Apache Flink?
Apache should provide more examples and sample code related to streaming to help me better adapt and utilize the tool. There is a need for increased awareness and education, especially around best ...
Ask a question
Earn 20 points
 

Also Known As

Flink
No data available
 

Overview

 

Sample Customers

LogRhythm, Inc., Inter-American Development Bank, Scientific Technologies Corporation, LotLinx, Inc., Benevity, Inc.
Honda, HSBC, Lufthansa, Nestle, 89Degrees.
Find out what your peers are saying about Databricks, Amazon Web Services (AWS), Microsoft and others in Streaming Analytics. Updated: May 2025.
851,604 professionals have used our research since 2012.