Try our new research platform with insights from 80,000+ expert users

Apache Flink vs SAS Event Stream Processing comparison

 

Comparison Buyer's Guide

Executive Summary

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Apache Flink
Ranking in Streaming Analytics
4th
Average Rating
7.8
Reviews Sentiment
6.7
Number of Reviews
19
Ranking in other categories
No ranking in other categories
SAS Event Stream Processing
Ranking in Streaming Analytics
25th
Average Rating
8.0
Reviews Sentiment
6.7
Number of Reviews
1
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of January 2026, in the Streaming Analytics category, the mindshare of Apache Flink is 12.3%, up from 11.6% compared to the previous year. The mindshare of SAS Event Stream Processing is 0.9%, up from 0.5% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Streaming Analytics Market Share Distribution
ProductMarket Share (%)
Apache Flink12.3%
SAS Event Stream Processing0.9%
Other86.8%
Streaming Analytics
 

Featured Reviews

Aswini Atibudhi - PeerSpot reviewer
Distinguished AI Leader at Walmart Global Tech at Walmart
Enables robust real-time data processing but documentation needs refinement
Apache Flink is very powerful, but it can be challenging for beginners because it requires prior experience with similar tools and technologies, such as Kafka and batch processing. It's essential to have a clear foundation; hence, it can be tough for beginners. However, once they grasp the concepts and have examples or references, it becomes easier. Intermediate users who are integrating with Kafka or other sources may find it smoother. After setting up and understanding the concepts, it becomes quite stable and scalable, allowing for customization of jobs. Every software, including Apache Flink, has room for improvement as it evolves. One key area for enhancement is user-friendliness and the developer experience; improving documentation and API specifications is essential, as they can currently be verbose and complex. Debugging and local testing pose challenges for newcomers, particularly when learning about concepts such as time semantics and state handling. Although the APIs exist, they aren't intuitive enough. We also need to simplify operational procedures, such as developing tools and tuning Flink clusters, as these processes can be quite complex. Additionally, implementing one-click rollback for failures and improving state management during dynamic scaling while retaining the last states is vital, as the current large states pose scaling challenges.
Roi Jason Buela - PeerSpot reviewer
Lead Technical Consultant at Thakral One
A solution with useful windowing features and great for operations and marketing
The persistence could be better. Although ESP is designed for in-memory processing, it would be better if the solution is enhanced or improved on the persistence of the data that is kept in the memory. For example, if one server goes down and the information is stored in the memory, it is lost. Therefore, the persistence needs to be improved so that if there are more cases where the server is down, the information and data can still be intact.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Apache Flink is meant for low latency applications. You take one event opposite if you want to maintain a certain state. When another event comes and you want to associate those events together, in-memory state management was a key feature for us."
"Apache Flink's best feature is its data streaming tool."
"The setup was not too difficult."
"Another feature is how Flink handles its radiuses. It has something called the checkpointing concept. You're dealing with billions and billions of requests, so your system is going to fail in large storage systems. Flink handles this by using the concept of checkpointing and savepointing, where they write the aggregated state into some separate storage. So in case of failure, you can basically recall from that state and come back."
"The product helps us to create both simple and complex data processing tasks. Over time, it has facilitated integration and navigation across multiple data sources tailored to each client's needs. We use Apache Flink to control our clients' installations."
"The ease of usage, even for complex tasks, stands out."
"Apache Flink allows you to reduce latency and process data in real-time, making it ideal for such scenarios."
"This is truly a real-time solution."
"The solution is beneficial on an enterprise level."
 

Cons

"The state maintains checkpoints and they use RocksDB or S3. They are good but sometimes the performance is affected when you use RocksDB for checkpointing."
"Apache should provide more examples and sample code related to streaming to help me better adapt and utilize the tool."
"We have a machine learning team that works with Python, but Apache Flink does not have full support for the language."
"Amazon's CloudFormation templates don't allow for direct deployment in the private subnet."
"In a future release, they could improve on making the error descriptions more clear."
"One way to improve Flink would be to enhance integration between different ecosystems. For example, there could be more integration with other big data vendors and platforms similar in scope to how Apache Flink works with Cloudera. Apache Flink is a part of the same ecosystem as Cloudera, and for batch processing it's actually very useful but for real-time processing there could be more development with regards to the big data capabilities amongst the various ecosystems out there."
"Apache Flink is very powerful, but it can be challenging for beginners because it requires prior experience with similar tools and technologies, such as Kafka and batch processing."
"Apache Flink should improve its data capability and data migration."
"The persistence could be better."
 

Pricing and Cost Advice

"Apache Flink is open source so we pay no licensing for the use of the software."
"It's an open-source solution."
"It's an open source."
"This is an open-source platform that can be used free of charge."
"The solution is open-source, which is free."
Information not available
report
Use our free recommendation engine to learn which Streaming Analytics solutions are best for your needs.
881,082 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
20%
Retailer
12%
Computer Software Company
10%
Manufacturing Company
6%
No data available
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business5
Midsize Enterprise3
Large Enterprise12
No data available
 

Questions from the Community

What do you like most about Apache Flink?
The product helps us to create both simple and complex data processing tasks. Over time, it has facilitated integration and navigation across multiple data sources tailored to each client's needs. ...
What is your experience regarding pricing and costs for Apache Flink?
The solution is expensive. I rate the product’s pricing a nine out of ten, where one is cheap and ten is expensive.
What needs improvement with Apache Flink?
Apache could improve Apache Flink by providing more functionality, as they need to fully support data integration. The connectors are still very few for Apache Flink. There is a lack of functionali...
Ask a question
Earn 20 points
 

Also Known As

Flink
No data available
 

Overview

 

Sample Customers

LogRhythm, Inc., Inter-American Development Bank, Scientific Technologies Corporation, LotLinx, Inc., Benevity, Inc.
Honda, HSBC, Lufthansa, Nestle, 89Degrees.
Find out what your peers are saying about Databricks, Amazon Web Services (AWS), Microsoft and others in Streaming Analytics. Updated: January 2026.
881,082 professionals have used our research since 2012.