Try our new research platform with insights from 80,000+ expert users

Google Cloud Datalab vs Microsoft Azure Machine Learning Studio comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Google Cloud Datalab
Ranking in Data Science Platforms
19th
Average Rating
7.8
Reviews Sentiment
6.4
Number of Reviews
6
Ranking in other categories
Data Visualization (17th)
Microsoft Azure Machine Lea...
Ranking in Data Science Platforms
5th
Average Rating
7.8
Reviews Sentiment
7.1
Number of Reviews
62
Ranking in other categories
AI Development Platforms (5th)
 

Mindshare comparison

As of January 2026, in the Data Science Platforms category, the mindshare of Google Cloud Datalab is 1.4%, up from 1.0% compared to the previous year. The mindshare of Microsoft Azure Machine Learning Studio is 3.7%, down from 5.7% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms Market Share Distribution
ProductMarket Share (%)
Microsoft Azure Machine Learning Studio3.7%
Google Cloud Datalab1.4%
Other94.9%
Data Science Platforms
 

Featured Reviews

LJ
System Architect at UST Global España
dashboards are good and data visualization is more meaningful for the end-user
Access is always via URL, and unless your network is fast, it would be a little tough in India. In India, if we had a faster network, it would be easier. In a big data environment, like when forcing your database with over a billion records, it can be tough for the end-user to manage the data. You need to have a single entity system in each environment. It's not because of GCP, but it would be great to have options like MongoDB or other similar tools in GCP. Then, we wouldn't always need to connect to the cloud and execute SQL queries. Even if your application is always connected to its database, the processing can be cumbersome. It shouldn't be so complicated. Once the data is collected, it should be easily sorted.
reviewer2722962 - PeerSpot reviewer
Data Scientist
Platform accelerates model development, enhances collaboration, and offers efficient deployment
The best features Microsoft Azure Machine Learning Studio offers include deep integration with Python notebooks and Azure Data Lake, which allows me to import external data, and through the pipeline, I can build my models, performing what is called data injection for my model building, making that deep integration quite interesting to use. Microsoft Azure Machine Learning Studio is a powerful platform for those already in the Azure ecosystem because it allows for scalability and provides a good environment for reproducibility, as well as collaboration tools, all designed and packaged in one place, which makes it outstanding. Microsoft Azure Machine Learning Studio has positively impacted my organization by reducing our project delivery times and increasing the pace at which we work, allowing us to focus on other more important tasks. Using Microsoft Azure Machine Learning Studio has reduced our model development time from approximately four hours to about two hours.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"For me, it has been a stable product."
"All of the features of this product are quite good."
"In MLOps, when we are designing the data pipeline, the designing of the data pipeline is easy in Google Cloud."
"The APIs are valuable."
"Google Cloud Datalab is very customizable."
"The infrastructure is highly reliable and efficient, contributing to a positive experience."
"I like being able to compare results across different training runs. The hyperparameter tuning function is a valuable feature because it provides the ability to run multiple experiments at the same time and compare results."
"The UI is very user-friendly and that AI is easy to use."
"The ability to do the templating and be able to transfer it so that I can easily do multiple types of models and data mining is a valuable aspect of this solution. You only have to set up the flows, the templates, and the data once and then you can make modifications and test different segmentations throughout."
"It's easy to use."
"The most valuable feature of this solution is the ability to use all of the cognitive services, prebuilt from Azure."
"Their web interface is good."
"The most valuable feature of the solution is the availability of ChatGPT in the solution."
"The most valuable feature is data normalization."
 

Cons

"Connectivity challenges for end-users, particularly when loading data, environments, and libraries, need to be addressed for an enhanced user experience."
"Even if your application is always connected to its database, the processing can be cumbersome. It shouldn't be so complicated."
"The product must be made more user-friendly."
"There is room for improvement in the graphical user interface. So that the initial user would use it properly, that would be a good option."
"We have also encountered challenges during our transition period in terms of data control and segmentation. The management of each channel and data structure as it has its own unique characteristics requires very detailed and precise control. The allocation should be appropriate and the complexity increases due to the different time zones and geographic locations of our clients. The process usually involves migrating the existing database sets to gcp and ensure data integrity is maintained. This is the only challenge that we faced while navigating the integers of the solution and honestly it was an interesting and unique experience."
"The interface should be more user-friendly."
"The platform's integration feature could be better."
"Microsoft Azure Machine Learning Studio could improve by adding pixel or image analysis. This is a priority for me."
"There's room for improvement in terms of binding the integration with Azure DevOps."
"The initial setup of Microsoft Azure Machine Learning Studio was rigorous for someone new like me, but mastering it made things simpler."
"The regulatory requirements of the product need improvement."
"Integration with social media would be a valuable enhancement."
"Easier customization and configuration would be beneficial."
"The solution cannot connect to private block storage."
 

Pricing and Cost Advice

"It is affordable for us because we have a limited number of users."
"The product is cheap."
"The pricing is quite reasonable, and I would give it a rating of four out of ten."
"When we got our first models and were ready for the user acceptance testing, our licensing fees were between €2,500 ($2,750 USD) and €3,000 ($3,300 USD) monthly."
"It is less expensive than one of its competitors."
"In terms of pricing, for any cloud solution, you should know the tricks of the trade and how to use it, otherwise, you'll end up paying a lot of money irrespective of the cloud provider, so at least for Microsoft Azure Machine Learning Studio pricing versus AWS, I would rate it three out of five, with one being the most expensive, and five being the cheapest. It could be cheaper, but you also have to be careful when choosing the plans, for example, consider the architecture and a lot of other factors before choosing your plan, if you don't want to end up paying more. If your cloud provider has an optimizer that seems to be available in every provider, that would keep alerting you in terms of resources not being used as much, then that would help you with budgeting."
"I am paying for it following a pay-as-you-go. So, the more I use it, the more it costs."
"The solution operates on a pay-per-use model."
"My team didn't deal with the licensing for Microsoft Azure Machine Learning Studio, so I'm unable to comment on pricing, but the money that was spent on the tool was worth it."
"I rate the solution's pricing a four on a scale of one to ten, where one is cheap, and ten is expensive."
"We pay only the Azure costs for what we use, which involves some subscription costs. But essentially, you pay for what you use. There are no extra costs in addition to the standard licensing fees."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
881,082 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Financial Services Firm
25%
Computer Software Company
10%
University
9%
Manufacturing Company
6%
Financial Services Firm
11%
Manufacturing Company
9%
Computer Software Company
9%
Performing Arts
6%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
No data available
By reviewers
Company SizeCount
Small Business23
Midsize Enterprise6
Large Enterprise30
 

Questions from the Community

What do you like most about Google Cloud Datalab?
Google Cloud Datalab is very customizable.
What needs improvement with Google Cloud Datalab?
Access is always via URL, and unless your network is fast, it would be a little tough in India. In India, if we had a faster network, it would be easier. In a big data environment, like when forcin...
What is your primary use case for Google Cloud Datalab?
It's for our daily data processing, and there's a batch job that executes it. The process involves more than ten servers or systems. Some of them use a mobile network, some are ONTAP networks, and ...
Which do you prefer - Databricks or Azure Machine Learning Studio?
Databricks gives you the option of working with several different languages, such as SQL, R, Scala, Apache Spark, or Python. It offers many different cluster choices and excellent integration with ...
What do you like most about Microsoft Azure Machine Learning Studio?
The learning curve is very low. Operationalizing the model is also very easy within the Azure ecosystem.
What is your experience regarding pricing and costs for Microsoft Azure Machine Learning Studio?
The pricing for Microsoft Azure Machine Learning Studio is reasonable since it's pay as you go, meaning it won't cost excessively unless specific resources are used.
 

Also Known As

No data available
Azure Machine Learning, MS Azure Machine Learning Studio
 

Overview

 

Sample Customers

Information Not Available
Walgreens Boots Alliance, Schneider Electric, BP
Find out what your peers are saying about Google Cloud Datalab vs. Microsoft Azure Machine Learning Studio and other solutions. Updated: December 2025.
881,082 professionals have used our research since 2012.