Try our new research platform with insights from 80,000+ expert users

Google Vertex AI vs IBM Watson Machine Learning comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 4, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Google Vertex AI
Ranking in AI Development Platforms
3rd
Average Rating
8.2
Reviews Sentiment
6.4
Number of Reviews
14
Ranking in other categories
AI-Agent Builders (6th)
IBM Watson Machine Learning
Ranking in AI Development Platforms
16th
Average Rating
8.0
Reviews Sentiment
7.1
Number of Reviews
7
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of January 2026, in the AI Development Platforms category, the mindshare of Google Vertex AI is 8.1%, down from 17.0% compared to the previous year. The mindshare of IBM Watson Machine Learning is 2.0%, up from 2.0% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms Market Share Distribution
ProductMarket Share (%)
Google Vertex AI8.1%
IBM Watson Machine Learning2.0%
Other89.9%
AI Development Platforms
 

Featured Reviews

Hamada Farag - PeerSpot reviewer
Technology Consultant at Beta Information Technology
Customization and integration empower diverse AI applications
We are familiar with most Google Cloud services, particularly infrastructure services, storage, compute, AI tools, containerization, GCP containerization, and cloud SQL. We are familiar with approximately eighty percent of Google's services, primarily related to infrastructure, AI, containers, backup, storage, and compute. We are familiar with Gemini AI and Google Vertex AI, and we have completed some exercises and cases with our customers for Google AI. We use automation in machine learning. I work with a team where everyone has specific responsibilities. We have design and development processes in place. Based on my experience, I would rate Google Vertex AI a 9 out of 10.
Anurag Mayank - PeerSpot reviewer
Manager at Maruti Suzuki India Limited
A highly efficient solution that delivers the desired results to its users
I had not considered how the solution could be improved because I was focused on how it was helping me to solve my issues. If I consider how we want to use it in our organization, certain areas of improvement can be addressed. For instance, we want to use it with Generative AI, not like ChatGPT, but in a way intended for industrial use. It would be beneficial to incorporate more AI into the solution.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"With just one single platform, Google Vertex AI platform, we can achieve everything; we need not switch over to multiple tools, multiple platforms, as everything can be accomplished through this one single platform for integration with existing workflows, systems, tools, and databases."
"The best feature of Google Vertex AI is the ease of use, along with the integration with the rest of the Google ecosystem and the way models can be made available outside Google through endpoints."
"The most valuable feature we've found is the model garden, which allows us to deploy and use various models through the provided endpoints easily."
"The monitoring feature is a true life-saver for data scientists. I give it a ten out of ten."
"The support is perfect and fantastic."
"Vertex comes with inbuilt integration with GCP for data storage."
"The most valuable features of the solution are that it is quite flexible, and some of the services are almost low-code, with no-code services, so it gives agents flexibility to build the use cases according to the operational needs."
"Google Vertex AI is an out-of-the-box and very easy-to-use solution."
"It has improved self-service and customer satisfaction."
"I was particularly interested in trying the AutoML feature to see how it handles data and proposes new models. The variety of models it provides is impressive."
"Scalability-wise, I rate the solution ten out of ten."
"It is has a lot of good features and we find the image classification very useful."
"The most valuable aspect of the solution's the cost and human labor savings."
"We can enable and change developer productivity with artificial intelligence-recommended code based on natural language input or exciting source code."
"The solution is very valuable to our organization due to the fact that we can work on it as a workflow."
 

Cons

"Google can improve Google Vertex AI in terms of analysis and accuracy. When passing a very large context, instead of receiving vague responses, it would be better if the system could prompt users not to pass overly large prompts and provide clearer guidance on how to fine-tune Gemini for specific use cases."
"It would be beneficial to have certain features included in the future, such as image generators and text-to-speech solutions."
"It is not completely mature and needs some features and functions. The interface needs to be more user-friendly."
"I think the technical documentation is not readily available in the tool."
"We used AutoML feature for developing AI models automatically, but we are not comfortable with the performance of those models."
"Google Vertex AI is good in machine learning and AI, but it lacks optimization."
"It takes a considerable amount of time to process, and I understand the technology behind why it takes this long, but this is something that could be reduced."
"Both major systems, Azure and Google, are not yet stabilized, especially their customer support."
"In future releases, I would like to see a more flexible environment."
"Sometimes training the model is difficult."
"Scaling is limited in some use cases. They need to make it easier to expand in all aspects."
"If I consider how we want to use it in our organization, certain areas of improvement can be addressed. For instance, we want to use it with Generative AI, not like ChatGPT, but in a way intended for industrial use."
"Honestly, I haven't seen any comparative report that has run the same data through two different artificial intelligence or machine learning capabilities to get something out of it. I would love to see that."
"They should add more GPU processing power to improve performance, especially when dealing with large amounts of data."
"The supporting language is limited."
 

Pricing and Cost Advice

"The Versa AI offers attractive pricing. With this pricing structure, I can leverage various opportunities to bring value to my business. It's a positive aspect worth considering."
"I think almost every tool offers a decent discount. In terms of credits or other stuff, every cloud provider provides a good number of incentives to onboard new clients."
"The solution's pricing is moderate."
"The price structure is very clear"
"I've only been using the free tier, but it's quite competitive on a service basis."
"The pricing model is good."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
881,082 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
13%
Financial Services Firm
9%
Manufacturing Company
9%
Educational Organization
7%
University
14%
Financial Services Firm
12%
Computer Software Company
10%
Educational Organization
9%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business5
Midsize Enterprise3
Large Enterprise7
No data available
 

Questions from the Community

What is your experience regarding pricing and costs for Google Vertex AI?
I purchased Google Vertex AI directly from Google, as we are a partner of Google. I would rate the pricing for Google Vertex AI as low; the price is affordable.
What needs improvement with Google Vertex AI?
We used AutoML feature for developing AI models automatically, but we are not comfortable with the performance of those models. We have to do some fine-tuning, hyperparameter optimization, and othe...
What is your primary use case for Google Vertex AI?
We are developing AI models and agents using Google Vertex AI platform, and we are deploying them using Google Vertex AI platform on Google Cloud Platform, GCP. With just one single platform, Googl...
What needs improvement with IBM Watson Machine Learning?
Sometimes training the model is difficult. We need to have at least a few different components to evaluate and understand the behavior of different users to have a very, very high accuracy in the m...
What is your primary use case for IBM Watson Machine Learning?
We use different artificial intelligence models to build questions and get answers for clients.
 

Overview

Find out what your peers are saying about Google Vertex AI vs. IBM Watson Machine Learning and other solutions. Updated: December 2025.
881,082 professionals have used our research since 2012.