Try our new research platform with insights from 80,000+ expert users

Google Vertex AI vs PyTorch comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 4, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

Google Vertex AI
Ranking in AI Development Platforms
3rd
Average Rating
8.2
Reviews Sentiment
6.4
Number of Reviews
14
Ranking in other categories
AI-Agent Builders (6th)
PyTorch
Ranking in AI Development Platforms
9th
Average Rating
8.6
Reviews Sentiment
7.2
Number of Reviews
13
Ranking in other categories
No ranking in other categories
 

Mindshare comparison

As of January 2026, in the AI Development Platforms category, the mindshare of Google Vertex AI is 8.1%, down from 17.0% compared to the previous year. The mindshare of PyTorch is 3.3%, up from 1.2% compared to the previous year. It is calculated based on PeerSpot user engagement data.
AI Development Platforms Market Share Distribution
ProductMarket Share (%)
Google Vertex AI8.1%
PyTorch3.3%
Other88.6%
AI Development Platforms
 

Featured Reviews

Hamada Farag - PeerSpot reviewer
Technology Consultant at Beta Information Technology
Customization and integration empower diverse AI applications
We are familiar with most Google Cloud services, particularly infrastructure services, storage, compute, AI tools, containerization, GCP containerization, and cloud SQL. We are familiar with approximately eighty percent of Google's services, primarily related to infrastructure, AI, containers, backup, storage, and compute. We are familiar with Gemini AI and Google Vertex AI, and we have completed some exercises and cases with our customers for Google AI. We use automation in machine learning. I work with a team where everyone has specific responsibilities. We have design and development processes in place. Based on my experience, I would rate Google Vertex AI a 9 out of 10.
Rohan Sharma - PeerSpot reviewer
AI/ML Co-Lead at Developer Student Clubs - GGV
Enabled creation of innovative projects through developer-friendly features
The aspect I like most about PyTorch is that it is really developer-friendly. Developers can constantly create new things, and everyone around the world can use it for free because it's an open-source product. What I personally like is that PyTorch has enabled users to use Apple's M1 chip natively for GPU users. Unlike other libraries using CUDA, PyTorch utilizes Metal Performance Shaders (MPS) to enable GPU usage on M1 chips.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"Vertex AI possesses multiple libraries, so it eliminates the need for extensive coding."
"The monitoring feature is a true life-saver for data scientists. I give it a ten out of ten."
"The integration of AutoML features streamlines our machine-learning workflows."
"With just one single platform, Google Vertex AI platform, we can achieve everything; we need not switch over to multiple tools, multiple platforms, as everything can be accomplished through this one single platform for integration with existing workflows, systems, tools, and databases."
"The best feature of Google Vertex AI is the ease of use, along with the integration with the rest of the Google ecosystem and the way models can be made available outside Google through endpoints."
"The support is perfect and fantastic."
"Google Vertex AI is an out-of-the-box and very easy-to-use solution."
"It provides the most valuable external analytics."
"The product's initial setup phase is easy."
"PyTorch allows me to build my projects from scratch."
"The framework of the solution is valuable."
"I like that PyTorch actually follows the pythonic way, and I feel that it's quite easy. It's easy to find compared to others who require us to type a long paragraph of code."
"PyTorch is developer-friendly, allowing developers to continuously create new projects."
"Its interface is the most valuable. The ability to have an interface to train machine learning models and construct them with the high-level interface, without excess busting and reconstructing the same technical elements, is very useful."
"It’s reliable, secure and user-friendly. It allows you to develop any AIML project efficiently. PySearch is the best option for developing any project in the AIML domain. The product is easy to install."
"It's been pretty scalable in terms of using multiple GPUs."
 

Cons

"We used AutoML feature for developing AI models automatically, but we are not comfortable with the performance of those models."
"I've noticed that using chat activity often presents a broader range of options and insights for a well-constructed question. Improving the knowledge base could be a key aspect for enhancement—expanding the information sources to enhance the generation process."
"Google Vertex AI is good in machine learning and AI, but it lacks optimization."
"It takes a considerable amount of time to process, and I understand the technology behind why it takes this long, but this is something that could be reduced."
"The tool's documentation is not good. It is hard."
"It is not completely mature and needs some features and functions. The interface needs to be more user-friendly."
"Both major systems, Azure and Google, are not yet stabilized, especially their customer support."
"I think the technical documentation is not readily available in the tool."
"On the production side of things, having more frameworks would be helpful."
"PyTorch needs improvement in working on ARM-based chips. They have unified memory for GPU and RAM, however, current GPUs used for processing are slow."
"PyTorch needs improvement in working on ARM-based chips. They have unified memory for GPU and RAM, however, current GPUs used for processing are slow."
"The product has certain shortcomings in the automation of machine learning."
"The analyzing and latency of compiling could be improved to provide enhanced results."
"I've had issues with stability when I use a lot of data and try out different combinations of modeling techniques."
"I do not have any complaints."
"PyTorch could make certain things more obvious. Even though it does make things like defining loss functions and calculating gradients in backward propagation clear, these concepts may confuse beginners. We find that it's kind of problematic. Despite having methods called on loss functions during backward passes, the oral documentation for beginners is quite complex."
 

Pricing and Cost Advice

"The solution's pricing is moderate."
"The price structure is very clear"
"The Versa AI offers attractive pricing. With this pricing structure, I can leverage various opportunities to bring value to my business. It's a positive aspect worth considering."
"I think almost every tool offers a decent discount. In terms of credits or other stuff, every cloud provider provides a good number of incentives to onboard new clients."
"PyTorch is open-sourced."
"It is free."
"PyTorch is an open-source solution."
"PyTorch is open source."
"The solution is affordable."
"It is free."
report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
881,082 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
13%
Financial Services Firm
9%
Manufacturing Company
9%
Educational Organization
7%
Manufacturing Company
17%
University
11%
Comms Service Provider
10%
Educational Organization
9%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
By reviewers
Company SizeCount
Small Business5
Midsize Enterprise3
Large Enterprise7
By reviewers
Company SizeCount
Small Business5
Midsize Enterprise4
Large Enterprise4
 

Questions from the Community

What is your experience regarding pricing and costs for Google Vertex AI?
I purchased Google Vertex AI directly from Google, as we are a partner of Google. I would rate the pricing for Google Vertex AI as low; the price is affordable.
What needs improvement with Google Vertex AI?
We used AutoML feature for developing AI models automatically, but we are not comfortable with the performance of those models. We have to do some fine-tuning, hyperparameter optimization, and othe...
What is your primary use case for Google Vertex AI?
We are developing AI models and agents using Google Vertex AI platform, and we are deploying them using Google Vertex AI platform on Google Cloud Platform, GCP. With just one single platform, Googl...
What is your experience regarding pricing and costs for PyTorch?
I haven't gone for a paid plan yet. I've just been using the free trial or open-source version.
What needs improvement with PyTorch?
PyTorch needs improvement in working on ARM-based chips. Although they have unified memory for GPU and RAM, they are unable to utilize these GPUs for processing efficiently. They take so much time....
 

Overview

Find out what your peers are saying about Google Vertex AI vs. PyTorch and other solutions. Updated: December 2025.
881,082 professionals have used our research since 2012.