Try our new research platform with insights from 80,000+ expert users

H2O.ai vs IBM SPSS Modeler comparison

 

Comparison Buyer's Guide

Executive SummaryUpdated on Dec 5, 2024

Review summaries and opinions

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Categories and Ranking

H2O.ai
Ranking in Data Science Platforms
16th
Average Rating
7.6
Reviews Sentiment
6.8
Number of Reviews
10
Ranking in other categories
Model Monitoring (4th)
IBM SPSS Modeler
Ranking in Data Science Platforms
19th
Average Rating
8.0
Reviews Sentiment
6.3
Number of Reviews
40
Ranking in other categories
Data Mining (4th)
 

Mindshare comparison

As of August 2025, in the Data Science Platforms category, the mindshare of H2O.ai is 1.8%, up from 1.4% compared to the previous year. The mindshare of IBM SPSS Modeler is 2.6%, up from 2.5% compared to the previous year. It is calculated based on PeerSpot user engagement data.
Data Science Platforms
 

Featured Reviews

Abhay Vyas - PeerSpot reviewer
Advanced model selection and time efficiency meet needs but documentation and fusion model support are needed
Even though H2O.ai provides the best model, there could be improvements in certain areas. For instance, when you want to work with fusion models, H2O.ai doesn't provide that kind of information. Currently, it provides individual models as outcomes. If it could offer combinations of models, such as suggesting using XGBoost along with SVM for wonderful results, that fusion model concept would be a good option for developers. I hope the fusion model concept will be implemented soon in H2O.ai. Regarding documentation, I faced challenges as I didn't see much information from a documentation perspective. When I was trying to learn how to train and test H2O.ai, there was limited documentation available. If they could improve in that area, it would be really beneficial.
PeterHuo - PeerSpot reviewer
Good tool for extracting data from data warehouses, creating streams, and manipulating logic to extract final data
There are performance issues. Extracting data from many combined tables can take hours and occasionally crash the server due to memory leaks. This performance problem bothers people. The performance issue seems to be related to the server. We design streams on the client and submit them to the server, which generates a large SQL statement. There are two potential bottlenecks: one in the server and another in data extraction. I'm unsure about the exact mechanics of data splitting when fetching from the database. When streams become larger, performance bottlenecks may occur in the IBM SPSS Modeler server or the database. Sometimes the server crashes and needs to be restarted to release memory on both sides. I'm not sure exactly where the problem is caused, as I focus on stream design rather than server issues. The problem could be on the IBM SPSS Modeler server and database.

Quotes from Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:
 

Pros

"The most valuable feature of H2O.ai is that it is plug-and-play."
"The most valuable features are the machine learning tools, the support for Jupyter Notebooks, and the collaboration that allows you to share it across people."
"One of the most interesting features of the product is their driverless component. The driverless component allows you to test several different algorithms along with navigating you through choosing the best algorithm."
"AutoML helps in hands-free initial evaluations of efficiency/accuracy of ML algorithms."
"I have utilized the AutoML feature in H2O.ai, which is one of the very powerful features where you don't need to worry about which algorithm is best for your model."
"It is helpful, intuitive, and easy to use. The learning curve is not too steep."
"Fast training, memory-efficient DataFrame manipulation, well-documented, easy-to-use algorithms, ability to integrate with enterprise Java apps (through POJO/MOJO) are the main reasons why we switched from Spark to H2O."
"The ease of use in connecting to our cluster machines."
"Extremely easy to use, it offers a generous selection of proprietary machine learning algorithms."
"The supervised models are valuable. It is also very organized and easy to use."
"It is just a lot faster. So you do not have to write a bunch of code, you can throw that stuff on there pretty quickly and do prototyping quickly."
"We have integration where you can write third-party apps. This sort of feature opens it up to being able to do anything you want."
"It is a great product for running statistical analysis."
"The visual modeling capability is one of its attractive features."
"The quality is very good."
"We use analytics with the visual modeling capability to leverage productivity improvements."
 

Cons

"I would like to see more features related to deployment."
"It needs a drag and drop GUI like KNIME, for easy access to and visibility of workflows."
"The interpretability module has room for improvement. Also, it needs to improve its ability to integrate with other systems, like SageMaker, and the overall integration capability."
"It lacks the data manipulation capabilities of R and Pandas DataFrames. We would kill for dplyr offloading H2O."
"H2O.ai can improve in areas like multimodal support and prompt engineering."
"Referring to bullet-3 as well, H2O DataFrame manipulation capabilities are too primitive."
"One improvement I would like to see in H2O.ai is regarding the integration capabilities with different data sources, as I've seen platforms like DataIQ and DataBricks offer great integration with various data sources."
"On the topic of model training and model governance, this solution cannot handle ten or twelve models running at the same time."
"The forecasting could be a bit easier."
"The challenge for the very technical data scientists: It is constraining for them.​"
"When I used it in the office, back in the day, we did have some stability issues. Sometimes it just randomly crashed and we couldn't get good feedback. But when I use it for my own stuff now I don't have any problems."
"Customer support is hard to contact."
"It would be good if IBM added help resources to the interface."
"I can say the solution is outdated."
"The platform's cloud version needs improvements."
"It is very good, but slow. The slowness may be because we have not finalized all the background information in SPSS. It still needs some tweaking."
 

Pricing and Cost Advice

"We have seen significant ROI where we were able to use the product in certain key projects and could automate a lot of processes. We were even able to reduce staff."
"Having in mind all four tools from Garner’s top quadrant, the pricing of this tool is competitive and it reflects the quality that it offers."
"It is a huge increase to time savings."
"When you are close to end of quarter, IBM and its partners can get you 60% to 70% discounts, so literally wait for the last day of the quarter for the best prices. You may feel like you are getting robbed if you can't receive a good discount."
"I am using the free version of IBM SPSS Modeler, it is the educational edition version."
"The scalability was kind of limited by our ability to get other people licenses, and that was usually more of a financial constraint. It's expensive, but it's a good tool."
"It is an expensive product."
"If you are in a university and the license is free then you can use the tool without any charges, which is good."
"This tool, being an IBM product, is pretty expensive."
report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
865,295 professionals have used our research since 2012.
 

Top Industries

By visitors reading reviews
Computer Software Company
17%
Financial Services Firm
17%
Manufacturing Company
9%
Educational Organization
6%
Financial Services Firm
12%
Educational Organization
11%
Government
10%
University
8%
 

Company Size

By reviewers
Large Enterprise
Midsize Enterprise
Small Business
 

Questions from the Community

What needs improvement with H2O.ai?
One improvement I would like to see in H2O.ai is regarding the integration capabilities with different data sources, as I've seen platforms like DataIQ and DataBricks offer great integration with v...
What is your primary use case for H2O.ai?
Normally, I use H2O.ai for my machine learning tasks, and to give an example, some of the models that I've created using H2O.ai are taxi demand forecasting and a scoring model for leads. Most of my...
What advice do you have for others considering H2O.ai?
I would rate the technical support a nine. For organizations considering H2O.ai, my recommendations include appreciating it as a great and flexible tool for machine learning tasks without incurring...
What do you like most about IBM SPSS Modeler?
Compared to other tools, the product works much easier to analyze data without coding.
What is your experience regarding pricing and costs for IBM SPSS Modeler?
The government has funds and a budget, it's hard to say if it's expensive or cheap. In Canada, they have a yearly budget. They used to encourage people to use the modeler for development. If ten us...
What needs improvement with IBM SPSS Modeler?
There are performance issues. Extracting data from many combined tables can take hours and occasionally crash the server due to memory leaks. This performance problem bothers people. The performanc...
 

Also Known As

No data available
SPSS Modeler
 

Overview

 

Sample Customers

poder.io, Stanley Black & Decker, G5, PWC, Comcast, Cisco
Reisebªro Idealtours GmbH, MedeAnalytics, Afni, Israel Electric Corporation, Nedbank Ltd., DigitalGlobe, Vodafone Hungary, Aegon Hungary, Bureau Veritas, Brammer Group, Florida Department of Juvenile Justice, InSites Consulting, Fortis Turkey
Find out what your peers are saying about H2O.ai vs. IBM SPSS Modeler and other solutions. Updated: July 2025.
865,295 professionals have used our research since 2012.